Overview of the Photodetector Development

Shoei Nakayama (ICRR)

for the Hyper-K Photodetector (HK-PD) WG

July 21, 2014

@ The 5th open Hyper-K meeting

Photodetector candidates (for ID)

Avalanche Diode

Hamamatsu R3600 PMT (Venetian-Blind dynode)

50cmφ Improved PMT (Box&Line dynode)

50cm HPD (Hybrid Photodetector)

- Super-K PMT
- Used for ~20 years
 - → Guaranteed
- Complex production
 - → Expensive

- Under development
- Better performance
- Same technology
 - → Lower risk

- Under development
- Far better performance
- Simple structure
 - → Lower cost
- New technology
 - → Higher risk

BetterPerformance

R&D activities in Japan

- Evaluated initial prototypes in a water Cherenkov detector
 - 20cm HPDs show good performance (T/Q resolution, dark rate)
 - Will keep monitoring photodetector stability
- Started performance evaluation of 50cm prototypes
 - HQE Box&Line PMT and HQE HPD
 - Showing much better performance than SK PMT
 - Characterization of B&L PMT in the air to be completed in a few months, followed by testing in a water Cherenkov detector
- The first prototype of magnetic shielding cage is under production

Photodetector testing in Canada

- Testing of the 20cmφ HPD prototype has just started at Photosensor Testing Facility (PTF) in TRIUMF
- Tom will present the status and plan in the calibration WG session

Contributions from the UK

In contact with Hamamatsu UK. Ordered HPD Testing in Scotland:

Photo-sensor HPD R12112 (A-type): General Specification

Planning to do quality checks, make tests in magnetic field and work on new preamp.

Test station at Edinburgh, showing dark box and electronics

J.McCarron University of Edinburgh

5

Experience in LHCb by Edinburgh:

- Responsible for HPD testing during construction and now operations
- Testing performance of multianode photomultipliers MaPMTs for LHCb upgrade
 - •Investigating the option of using the LAPPDs (Large Area Picosecond Photo-Detectors) at QMUL both sw and hw when available. Relevant for ND.

U.S. PMT Update

280 mm (11") photomultiplier D784KFLB provisional data sheet

	unit	min	typ	max
photocathode: bialkali active diameter	mm		270	
active surface area	mm cm²		800	
quantum efficiency at peak	%		30	
luminous sensitivity	μ A /lm	_	70	
with CB filter with CR filter		8	12 1	
dynodes: 12LFSbCs			·	
anode sensitivity in divider A:	A (1		500	
nominal anode sensitivity max. rated anode sensitivity	A/lm A/lm		500 2000	
overall V for nominal A/Im	V		1400	1800
overall V for max. rated A/Im	V		1550	
gain at nominal A/lm dark current at 20 °C:	x 10 ⁶		7	
dc at nominal A/lm	nA		20	200
dc at max. rated A/Im	nA		80	
dark count rate	s ⁻¹		20000	
pulsed linearity (-5% deviation) divider A	: mA		30	
divider B	mA		100	
pulse height resolution:	ti			
single electron peak to valley rate effect (I _a for \(\Delta g/g=1\%):	ratio uA		2 20	
temperature coefficient:	% °C ⁻¹		± 0.5	
timing:	70 C		10.5	
single electron rise time	ns		5	
single electron fwhm single electron jitter (fwhm)	ns ns		6 3	
transit time	ns		62	
weight:	g		2600	
maximum ratings: anode current	uА			100
cathode current	nA			2000
gain	x 10 ⁶			30
sensitivity temperature	A/lm °C	-30		2000 60
V (k-a) ⁽¹⁾	v	-30		2350
V (k-d1)	v			750
V (d-d) ⁽²⁾	V			300
ambient pressure (absolute)	kPa			808

- Davis is expecting 20 11" prototype PMT's from ADIT/ ETEL, in Sweetwater Texas
- A first shipment of 11" HQE PMTs prototype was expected in May, but there was a delay. The shipment is now expected in September.
- ETEL/ADIT have all the internal parts and glass bulbs to construct the PMT's
- Properties will be tested at Davis and Penn and the results will be presented at the next Hyper-K open meeting
- May provide a cost-effective alternative to Hamamatsu for the veto PMT. Also for use in WATCHMAN.

Photodetector session

- Conveners: Dr. Nakayama, Shoei (Kamioka Observatory, ICRR, University of Tokyo); Dr. NISHIMURA, Yasuhiro (ICRR)

time title	presenter
12:40 Overview of the photodetector development (00h10')	Dr. NAKAYAMA, Shoei (Kamioka Observatory, ICRR, University of Tokyo)
12:50 Viability test of photodetectors in the water tank (00h20')	Mr. OKAJIMA, Yuji (Tokyo Institute of Technology)
13:10 New 50-cm diameter photodetectors (00h20')	Mr. SUDA, Yusuke (University of Tokyo)
13:30 A status and prospect of the photodetector development in Kamioka (00h20')	Dr. NISHIMURA, Yasuhiro (ICRR)

Enjoy!

Supplement

Schedule (mid/long-term)

Protective cases and support structure

- A large photo-sensors in Hyper-K must be housed in protective cases to avoid a chain implosion
 - At least, inner detector photo-sensors
- It is likely enough that we need passive magnetic shielding instead of active magnetic compensation using coils
 - mu-metal case (like Double Chooz, etc.)
 - mu-metal cage (like Kamiokande, etc.)
- ☐ We are starting R&D for cases and support structures

Simulation study

- Hyper-K software WG has developed the detector simulation program (WCSim)
 - It is almost ready for detector optimization study and physics sensitivity study
- We should start detector simulation studies to investigate requirements for each photodetector option
 - From a viewpoint of physics sensitivities
 - In collaboration with the HK software WG
 - CE/QE, timing resolution, S/N, acceptance, dark rate, ...
 - Size, number of sensors, ...
 - Light collection idea

Documentation

- We will make a HK-internal document first.
 - Describing results from past/present studies
 - As for studies not specifically for Hyper-K, we need description on possible applications to Hyper-K in addition to references to relevant papers/documents.
 - The global R&D plan and to-do items
 - Expected to be updated accordingly as new results come
- Later, we will produce a public document.
 - By removing confidential information