

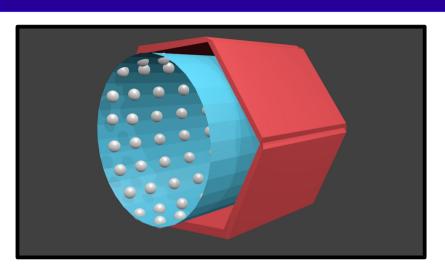
TITUS: Introduction to Gd-based Analysis

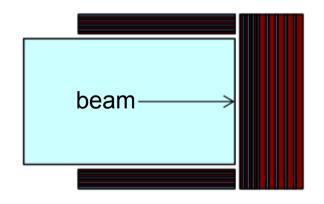
Matthew Malek Imperial College London

19 July 2014 Hyper-Kamiokande ND/Flux Pre-Meeting

Outline

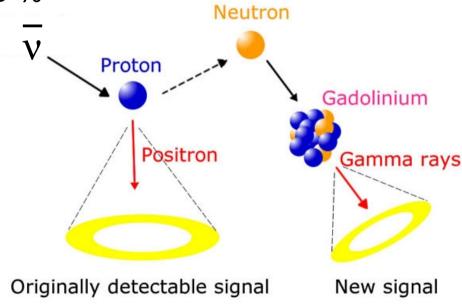
- TITUS: The Tokai Intermediate Tank w/ Unoscillated Spectrum
 - Detector description
 - Physics potential
- Software development: Simulation & Reconstruction
- Interfacing WC with Muon Range Detector
- Neutron multiplicity measurements
- Future work


Titus Flavius: Emperor of Rome (79 – 81)

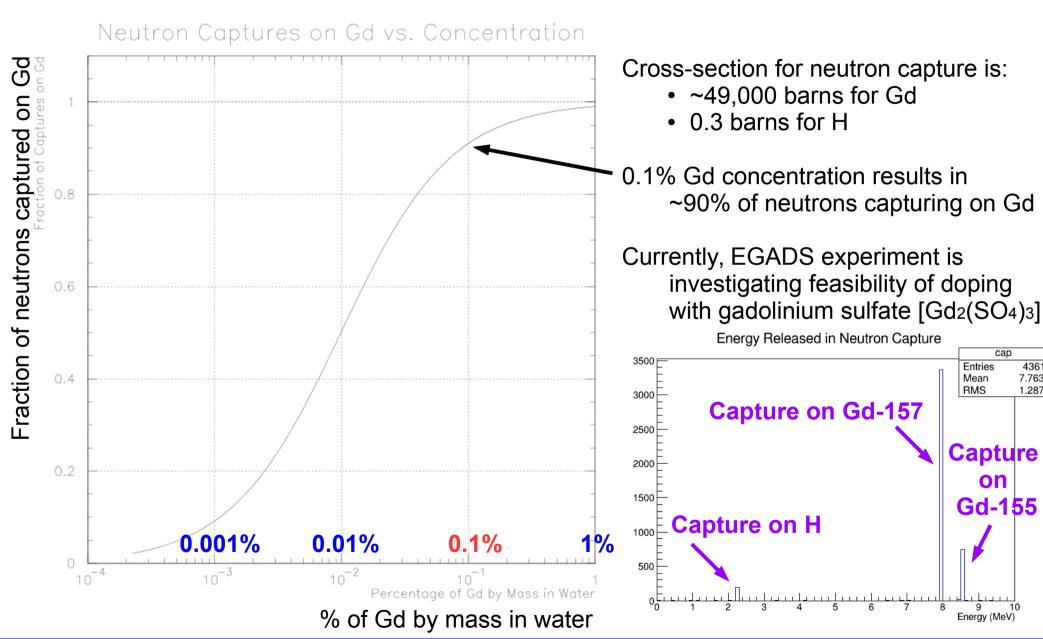

"Titus Andronicus" by William Shakespeare (1594)

TITUS Overview

- Proposed new near detector for HK beam programme
- To be located ~2 km from J-PARC neutrino beam
- Baseline design includes:
 - 2 ktonne water Cherenkov tank
 - 0.1% Gadolinium-doping
 - Partly enclosed by Muon Range Detector
 - Fe & plastic scintillator
 - End: 100 or 150 cm Fe
 - Side: 50 cm Fe (up to 75% coverage)
- Likely add-ons / upgrades currently being investigated include:
 - Magnetised MRD (1.5 Tesla field) for charge-sign reconstruction
 - Large Area Picosecond Photo-Detectors (LAPPDs) for high precision timing
 - High quantum efficiency PMTs (HQE PMTs)
- Future possible add-ons / upgrades include:
 - Water-based liquid scintillator
 - ??? (New ideas welcome!)


Gadolinium Doping

• CCQE for $v: v + n \rightarrow l^- + p$ (p is "invisible")


CCQE for
$$\overline{v}$$
: $\overline{v} + p \rightarrow l^+ + n$

- In ordinary water: n thermalizes, then captured on a free proton (H)
 - Capture time is ~200 μsec
 - 2.2 MeV gamma emitted
 - Detection efficiency @ SK is ~20 %
- When n captured on Gd:
 - Capture time ~20 μsec
 - ~8 MeV gamma cascade
 - 4 5 MeV visible energy
 - 100% detection efficiency

Neutron Capture w/ Gd

4361 7.763 1.287

Physics Benefits of Gd

- "Wrong sign" neutrino discrimination
 - From T2K sensitivity studies, we know that running a mix of neutrino mode & antineutrino mode enhances δ_{CP} sensitivity
 - Antineutrino mode has greater contamination from neutrinos
 - With Gd-doping, can separate v from \overline{v} in TITUS to understand contamination, characterize beam, and reduce systematics for Hyper-K
- Neutron capture can be used to separate CCQE from CC MEC and CC Other, to enhance purity of CCQE in CC0 π sample:

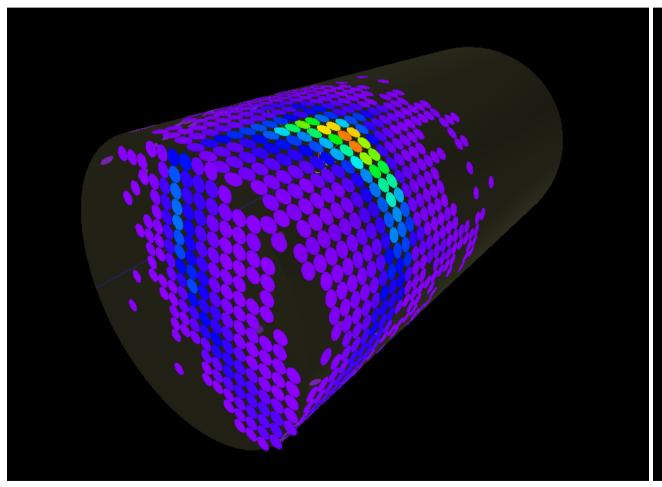
```
- \nu_{\mu} CCQE: 0 neutrons
```

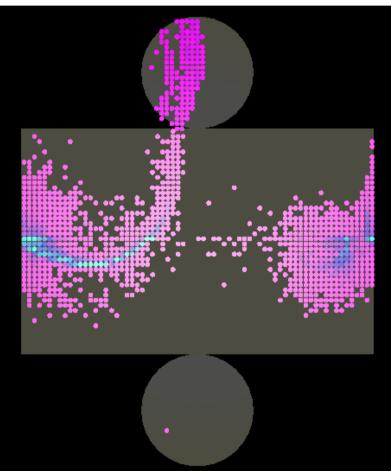
-
$$\nu\mu$$
 CC MEC: 0.2 neutrons (average): $\nu\mu$ + (n-n) $\rightarrow \mu$ + p + n

$$-\overline{\nu}_{\mu}$$
 CCQE: 1 neutron

-
$$\bar{\nu}\mu$$
 CC MEC: 1.8 neutrons (average): $\bar{\nu}\mu$ + (p-n) $\rightarrow \mu^+$ + n + n (~80%) $\bar{\nu}\mu$ + (p-p) $\rightarrow \mu^+$ + p + n (~10%)

TITUS Physics Programme



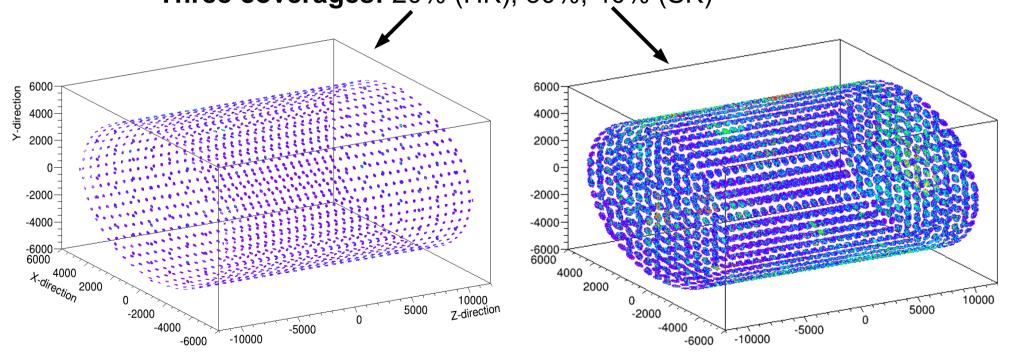

- Measure intrinsic ve component of J-PARC beam
 - Dominant background to ve appearance measurement
- Neutron multiplicity measurements
 - Provide input to neutrino generator models
 - Distinguish CCQE from other modes
 - Enhance Hyper-K proton decay searches (by an order of magnitude!)
- Cross-section measurements
 - Inclusive $NC\pi^0$ sub-dominant v_e appearance BG & can improve knowledge of M_A^{RES}
 - CCQE vs. CC-inclusive
- Sterile neutrino searches
 - Compare CC & NC rates at 280 m & 2 km to look for ν_{active} disappearance
- Supernova burst neutrinos
 - Approx. 650 events expected from SN burst (570 $\overline{\nu}_e$ IBD + 80 ν_e ES)
 - Evaluating feasibility as an independent alarm for the SNEWS network

TITUS Simulations

- Neutrino generation via NEUT & GENIE
- Detector simulation with WChSandBox: New fast simulation software package!

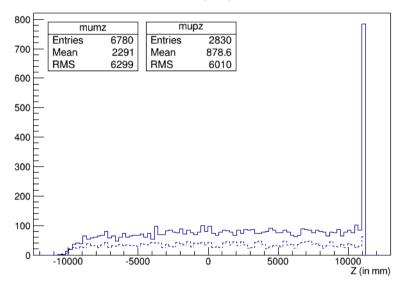
Event Display by A. Finch

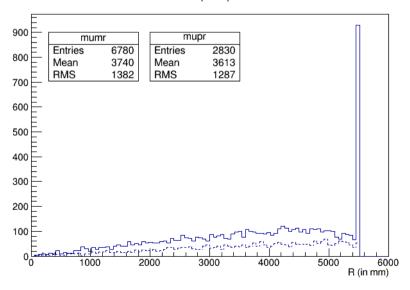
CCQE (1Rµ)


TITUS Reconstruction

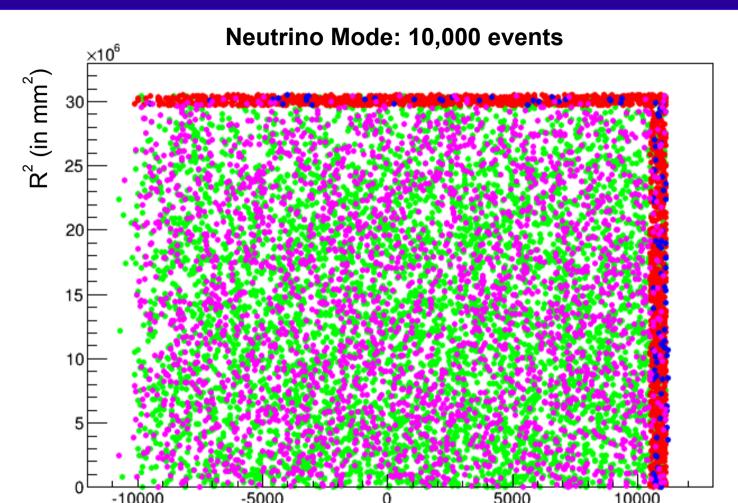
- Reconstruction:
 - Current "pseudo-reconstruction" uses smearing tables based on "fiTQun"
 - Pattern-of-light fit currently being developed for SK, T2K, HK
 - Development of both high-E and low-E (< 20 MeV) reconstruction algorithms
 - Photosensor optimisation currently underway:

• Six arrangements: 20" PMT, 12" PMT, 8" PMT (with & without LAPPDs)


• Three coverages: 20% (HK), 30%, 40% (SK)


WC + MRD

Final Muon Position (in Z): Neutrino Beam

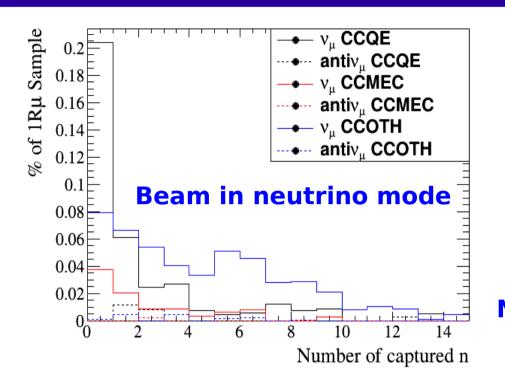

Final Muon Position (in R): Neutrino Beam

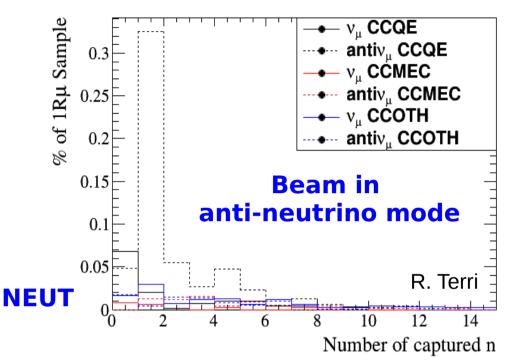
- Muons that escape the water tank enter the MRD
- Range within MRD provides μ momentum
- Example shown is 10,000 event sample in v-mode
 - Nearly no backwards exiting events
 - Most wrong-sign muons contained
- Magnetized MRD offers complementary information to neutron tagging with gadolinium
- At high-E_ν, μ escapes MRD
 - Charge-sign easy to determine
 - Can be used to calibrate and validate v / \overline{v} discrimination via Gd
- At lower energies (*i.e.*, oscillation region), charge reconstruction less efficient
- Curvature in MRD is **complementary** information to neutron multiplicity
 - Combination of WC + MRD can give very accurate particle / antiparticle separation!

Muon Positions in 2D

Final position in WC tank shown for all muons

Red = Right-sign muons (μ) exiting water tank Z (mm)


Blue = Wrong-sign muons (μ^{+}) exiting water tank


Green = Right-sign muons (μ) contained within water tank

Purple = Wrong-sign muons (μ^{\dagger}) contained within water tank

Neutron Multiplicity

- Studies of neutron capture demonstrate the power that gadolinium-doping adds to TITUS
- Ingredients in these figures:
 - 90% of neutrons capture on Gd
 - Neutrons from secondary interactions are included
- Clear differences can be seen between v_{μ} and \overline{v}_{μ} ; backgrounds from CC MEC and CC Other are reduced
- Enhanced sample purities:
 - ν_{μ} CCQE: 37% \rightarrow 63% with n = 0 requirement
 - $\overline{\nu}_{\mu}$ CCQE: 55% \rightarrow 82% with n = 1 requirement

Neutron Multiplicity

NEUT

Beam Mode & Selection	CC QE	CC MEC	CC 1π	CC Other	NC	'Wrong-Sign' CC
νμ all	37%	10%	28%	19%	3%	4%
$\nu\mu$ with n = 0 (CCQE-enhanced)	63%	12%	11%	13%	< 1%	< 1%
$\nu\mu$ with n > 0 (CCQE-enhanced)	20%	7%	38%	25%	5%	5%
- νμ all	55%	7%	5%	2%	4%	27%
$\overline{\nu}\mu$ with $n=0$	30%	< 1%	2%	1%	8%	59%
$\overline{\nu}_{\mu}$ with $n=1$	82%	3%	< 1%	< 1%	1%	13%
$\overline{\nu}_{\mu}$ with n > 1	41%	13%	11%	3%	4%	28%

N.B. Each sample (row) sums to ~100% (modulo rounding)

Ongoing Work

- TITUS efforts are still ramping up → LOTS of recent work!
 - Event generation
 - Software development
 - Photosensor implementation and optimisation
 - Water Cherenkov + MRD joint analysis
 - High energy reconstruction
 - Low energy reconstruction (< 20 MeV)
 - Event selection
 - Selection criteria (esp. CCQE)
 - Fiducial volume optimisation
 - Detector and beam studies
 - Neutron capture & multiplicity
 - Intrinsic beam v_e measurements
 - Separation of v / \overline{v}
 - Intrinsic NCπ⁰ studies
 - Physics analyses
 - Oscillation sensitivity at Hyper-Kamiokande
 - Sterile neutrino search
 - Supernova burst evaluation
 - Proton decay background reduction

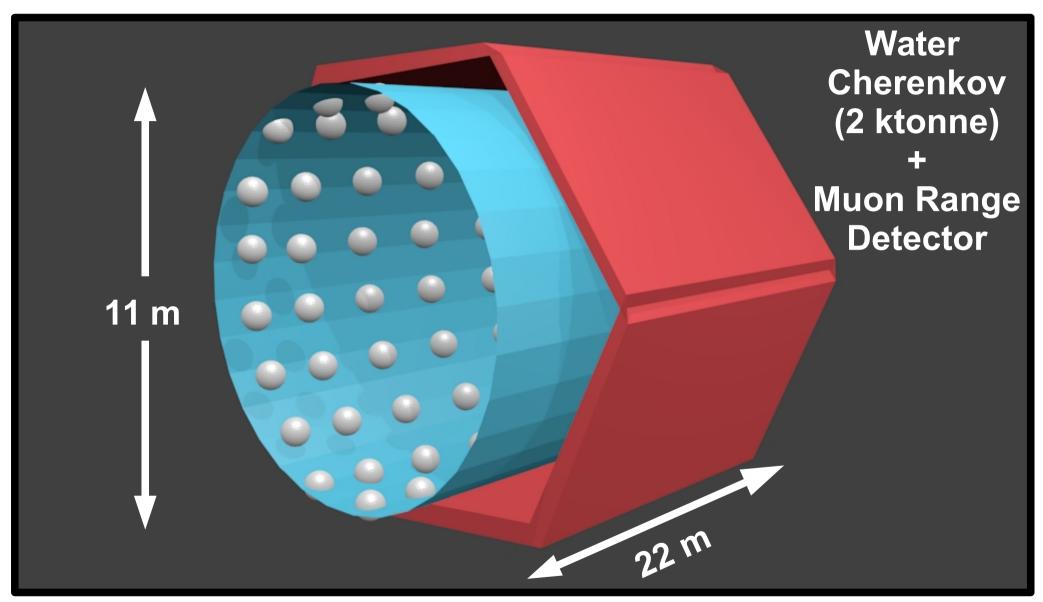
Important for Gadolinium-based analyses

Ongoing Work

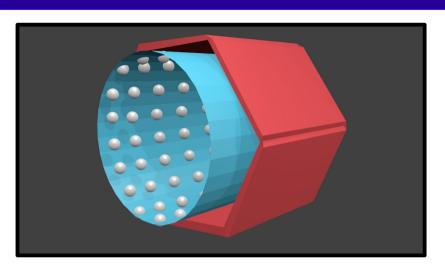
- TITUS efforts are still ramping up → LOTS of recent work!
 - Event generation
 - Software development
 - Photosensor implementation and optimisation
 - Water Cherenkov + MRD joint analysis
 - High energy reconstruction
 - Low energy reconstruction (< 20 MeV)
 - Event selection
 - Selection criteria (esp. CCQE)
 - Fiducial volume optimisation
 - Detector and beam studies
 - Neutron capture & multiplicity
 - Intrinsic beam v_e measurements
 - Separation of v / \overline{v}
 - Intrinsic NCπ⁰ studies
 - Physics analyses
 - Oscillation sensitivity at Hyper-Kamiokande
 - Sterile neutrino search
 - Supernova burst evaluation
 - Proton decay background reduction

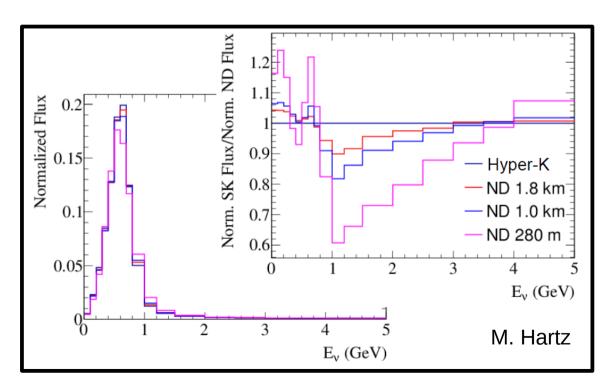
Much work to be done!

Many people getting involved recently...

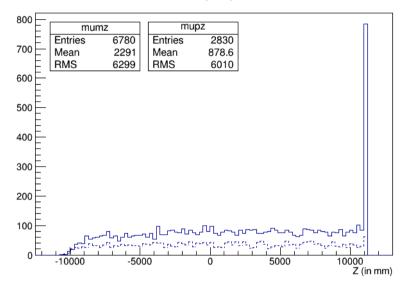

...let us know if you want to join!

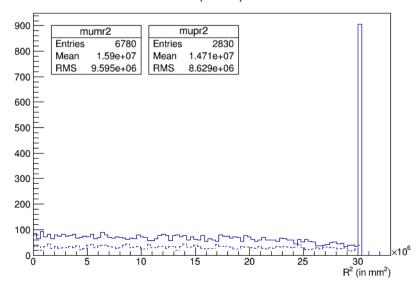
BACK-UP SLIDES

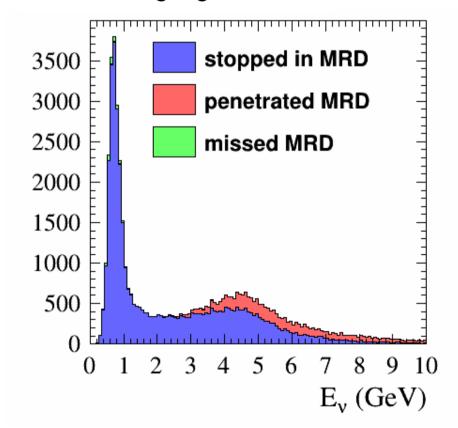

TITUS


TITUS Overview

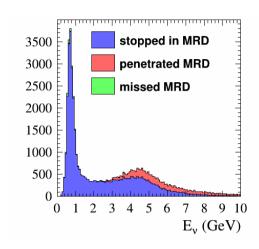
- Proposed new near detector for HK beam programme
- To be located ~2 km from J-PARC neutrino beam
- Baseline design includes:
 - 2 ktonne water Cherenkov tank
 - 0.1% Gadolinium-doping
 - Partly enclosed by Muon Range Detector


- Same target nuclei as Hyper-K
 H₂O (and maybe Gd)
- Nearly same target angle and v energy spectrum
- Many systematics cancel out in Far/Near ratio

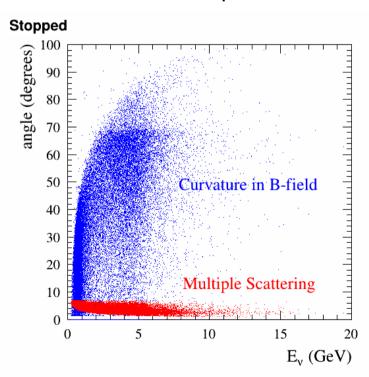

Muon Positions by R²

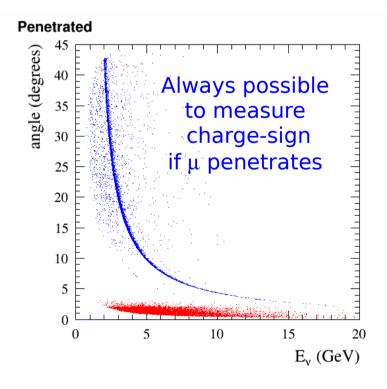

Final Muon Position (in Z): Neutrino Beam

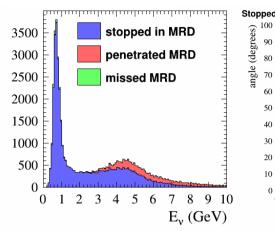
Final Muon Position (in R 2): Neutrino Beam

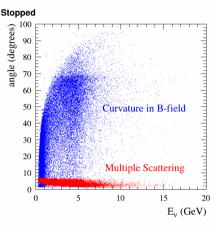


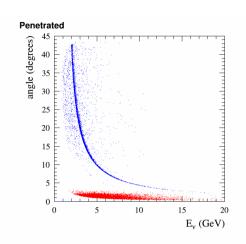
- Muons that escape the water tank enter the MRD
- Range within MRD provides μ momentum
- Example shown is 10,000 event sample in v-mode
 - Nearly no backwards exiting events
 - Most wrong-sign muons contained



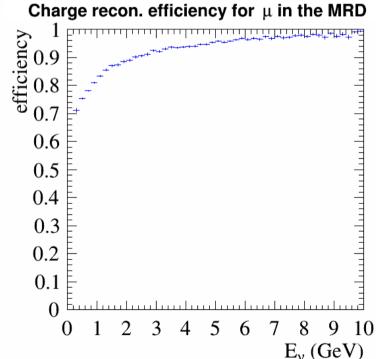

Magnetizing the MRD

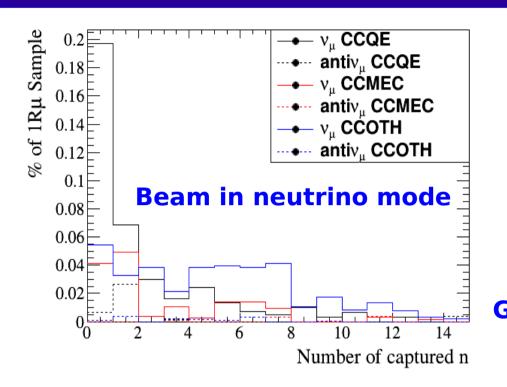

- A 1.5 Tesla magnetic field enables:
 - Momentum reco. for μ that penetrate MRD (magnitude of curvature)
 - Charge-sign reconstruction (direction of curvature)
- For μ that stop in MRD, multiple scattering may inhibit curvature measurement
- For μ that penetrate MRD, always possible to separate curvature from multiple scatters

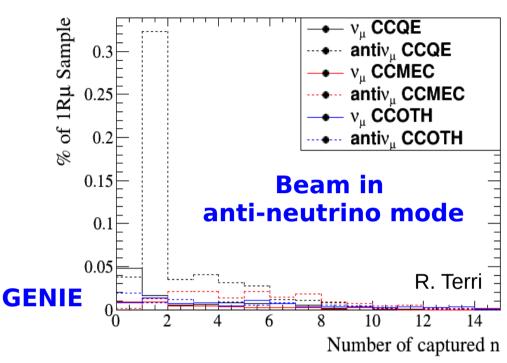




PID with MRD






- At high-E_V, μ escapes MRD
 - Charge-sign easy to determine
 - Can be used to calibrate and validate v / v discrimination via Gd
- At lower energies (*i.e.*, oscillation region), charge reconstruction less efficient
- Curvature in MRD is complementary information to neutron multiplicity
 - Combination of WC + MRD can give very accurate particle / antiparticle separation!

Neutron Multiplicity

- Studies of neutron capture demonstrate the power that gadolinium-doping adds to TITUS
- Ingredients in these figures:
 - 90% of neutrons capture on Gd
 - Neutrons from secondary interactions are included
- Clear differences can be seen between v_{μ} and \overline{v}_{μ} ; backgrounds from CC MEC and CC Other are reduced
- Enhanced sample purities:
 - ν_{μ} CCQE: 38% \rightarrow 66% with n = 0 requirement
 - $\overline{\nu}_{\mu}$ CCQE: 53% → 85% with n = 1 requirement