DAQ (i.e electronics) R&D status in Canada

F.Retiere, T.Lindner, C. Rethmeier (undergrad. Student), P-A. Amaudruz, D. Bishop and 4 UBC eng. students

Outline

- Explore flash ADC solution
 - Requirement
 - Strategy
 - Test setup
 - Test results
- Front end electronics communication protocol
 - Investigate using rapidIO protocol

Electronics requirement recap

- Timing resolution σ≤0.5ns for 1 photo-electron
- Noise ≤0.1PE
- Dynamic range
 - 1,000 PE over 1ms
 - What is it over 50ns, 250?
 - Maintain PMT linearity, i.e. use low gain?
- Power dissipation ~1W/channel
- Readout scheme
 - Dark noise dominated ~5kHz/PMT
 - Only send time (~TDC) and charge (~QDC) for single PE
 - Could send more data for >1PE pulses
 - Trigger less front end. Send information to backend for all pulses
 - Data suppression occur in backend
 - Daisy-chained in-water front end boards
 - Need fail-safe communication system
- Desirable features:
 - Deadtime-less
 - Ability to identify and time stamp every photo-electrons

Our digitization strategy

Measuring time

- FPGA based (eventually)
 - Digital CFD
 - Template matching
 - Some smart interpolation
- Analysis offline for now
 - Use fit function
- Performance expectation
 - Resolution scales by rise time over signal to noise
 - Crank the PMT gain yield better time but worse dynamic range / linearity

Time (2ns/bin)

Test setup

- Signal
 - PMT + shaper
 - R5912 PMT (8") but Transit Time Spread ~ 3ns and R9875P with TTS<0.5ns but very fast pulse
 - Shaping using DEAP signal conditioning board. Not optimized for timing resolution
 - Arbitrary waveform generator
 - Allow changing pulse shape, and amplitude
- Digitizers
 - 500MHZ, 14bits, CAEN V1730
 - 250MHz, 12bits, CAEN V1720
 - 100MHz, TRIUMF custom FADC for GRIFFIN experiment
- Pulse analysis offline analysis for now
 - Test CAEN digital CFD later this year

PMT+SCB vs Arbirtrary waveform generator

Timing resolution vs PE

PE is not a well defined quantity however...

Timing resolution vs amplitude

Cranking up the PMT gain helps but compromise dynamic range.
Single PE amplitudes should be ~20ADC for 12 bits ADC and 80ADC for 14 bits ADC
So inferred SPE resolution is 0.55ns for 12bits/250MHz ADC, 0.42ns for 14bits/500MHz ADC

Timing resolution vs S/N

Good news: speed does not matter much... If rise time is the same

Future test plans

- Using AWG in next 2 months
 - Compare 500MHz,250MHz and 100MHz FADC
 - Investigate scaling with signal to noise and rise time
 - Write a paper

- Build shapers optimized for 500MHz, 250MHz and 100MHz and 12-14-16 bits
 - Investigate performances
 - Especially noise
 - Identify a compelling solution for HK prototype
 - 500MHz is not a valid solution because it is too expensive and power hungry

Implementation in HK prototype

- Build on a mezzanine
 - Interface with carrier board
 - Interface specifications to be written by T2K collaboration
 - Carrier board hardware should be fleshed out
- Start design work in March 2015
 - Mezzanine hardware
 - Firmware
 - Step 1 shipping raw waveforms
 - Step 2 with online suppression
 - Also investigating the option of having CAEN provide the mezzanine

Repackaging existing mezzanine used in VME modules

Rapid-IO for communication

- Set up a project with UBC engineering students
 - Entertaining summary here http://m.youtube.com/watch?v=SLuMxaAzK0s
- Goal was to develop a fail-safe mesh network exploring various options
 - Student focused on rapidIO (as suggested)
 - Did not investigate other options thoroughly
- Development on Altera evaluation boards

RapidIO communication

- What we learned:
 - Multi-layer systems with a lot of build-in fonctionality
 - Very good monitoring and error checking capabilities
 - Students achieved 900Mbps so ~90% efficiency with fix routine
 - Students developed on the fly routing capabilities but efficiency only 50%
 - And on the fly re-routing is probably not desirable
- Overall promising solutions

Summary

- Promising results with flash ADC
 - Will start specific implementation for HK in 2014
 - Start with shaper and use commercial FADC
 - In collaboration with Warsaw group
 - Design and build mezzanine prototype in 2015

- Will also investigate added value of flash ADC regarding physics
- Promising results with rapidIO protocol
 - Flexible routing scheme and error checking
 - Development to continue in house
 - Mostly driven by other projects