Status and Prospect of the Photo-detector Development in Kamioka

Yasuhiro NISHIMURA

RCCN, University of Tokyo

5th Hyper-K open Meting 21/Jul/2014

Contents

Outline and prospect of photosensor R&D in Japan

- Other related study of performance
 - O Pulse shape
 - After pulse noise
 - O Plan of response measurement
- R&D status and options
 - O Next proof test
 - Electronics development for HPD
- Overview of test and performance

Optimization of pulse shape

Pulse shape of HPD/PMT was optimized in electronics.

- 8" HPD preamplifier (Jan 2013)
 - CR time constant in preamplifier was adjusted to get enough charge resolution for EGADS proof test.
- 20" Box&Line PMT bleeder circuit (May-Jun 2014)
 - Two types of bleeder circuit were tested. (damping resistor, etc.)
 - 1. Fast response with residual ringing
 - \bigcirc Pulse FWHM 10.4ns \longleftrightarrow 12.9ns
 - \bigcirc Pulse height 1.3:1
 - Fast response with residual ringing
 Smooth recovery with ringing suppressed to the large suppressed Performance and charge gain are almost similar.
 - Adopt 2. bleeder circuit for proof test.

Pulse height distribution

- Minimum hit threshold is restricted by noise level.
 - O SK PMT threshold is set at 0.25 p.e. (1 mV) in proof test

08" HPD threshold is set at 0.5 p.e. (4 mV) in proof test

(w/70m cable)

450 50cm Φ PDs 400 **HQE Super-K PMT** 350 **HQE Box&Line PMT** 300 HQE HPD (w/5mmΦAD) 250 200 1 p.e. 150 100 50 Charge [pC]

1 p.e. pulse height distribution

→ Peak at pulse height differs by its time response PMTs : Gain set at same 10⁷ : Larger electronic noise -> Good 1 p.e. separation in pulse height

Better single hit efficiency is expected in new photodetectors.

After pulse in PMT

Usual pulse might be accompanied with other pulses.

A few tens nsec faster than main pulse.
It depends on dynode structure and injection angle. Few rate and less gain are expected.

0 nsec

(-100 nsec -)

Main pulse

Main signal.

Transit time (TT) from photocathode to 1st dynode depends on a bias voltage a little.

0 nsec + TT (Transit Time)

(Within T resolution & time walk)

Late pulse

Photoelectron gets back scattered on 1st dynode w/o multiplication. It takes three times more than transit time.

 $0 \operatorname{nsec} + 3 \times TT$

(30 - 150 nsec)

After pulse

Residual gas in vacuum is ionized and goes back to photocathode, then photoelectron is emitted again. Time depends on its ion mass.

0 nsec + TT of e⁻ and gas ion (150 nsec – 100 μsec)

Ringing, reflection in bleeder circuit might also appear.

After pulse with in new PDs

- Much pulse by Box&Line dynode
 - O Dynodes of Box&Line PMT opened to photocathode largely, which can allow gas ionization to move back on BOX&L photocathode easier than Venetian blind dynode.

- Less pulse in HPD expected
 - No metal dynodes could avoid ionization gas during multiplication.
 - Avalanche diode has after pulse also, but it is much less than MPPC (SiPM) operated in Geiger mode. (To be studied)

50cm Φ PDs
HQE Super-K PMT
HQE Box&Line PMT
HQE HPD (w/5mmΦAD)

NOTE: HPD w/5mm Φ AD prototype has less collection efficiency, half than its design (20mmΦ). Need evaluation in final design.

PMT late pulse measurement

Pulse measured at 0.25 p.e. level around 1 p.e signal using multi hit TDC with 20 nsec counting

Pulses within 400 ns integration range

(All integrated as 1 hit in Super-K)

21/Jul/2014

Evaluation of relative pulse rate:

- 1. Dark rate using off-time events before main pulse.
- 2. Count in each time window.
- 3. Relative ratio to main pulse.
- Ringing depends on circuit
 Less ringing in HQE Box&Line PMT
 (Fast-response bleeder circuit w/ ringing at 0.5 p.e. thre.)

- No problem in integration, accompanied with main pulse.
- Reflection time varied by cable length.
 - In SK, out of range for integration.

Comparable pulse rates in both cases

PMT after pulse measurement

Pulse measured at 0.25 p.e. level around 1 p.e signal using multi hit TDC with 20 nsec counting

After Pulses Define in 3 regions

Evaluation of relative pulse rate:

- 1. Dark rate using off-time events before main pulse.
- 2. Count in each time window.
- 3. Relative ratio to main pulse.

Peak timing determined by

- Molecular mass of gas
- Bias voltage
- Drift length

Contamination changed by residual gas, thus

- Time after HV applied
- Aging after a long run
- Gas leak from outside
- Individual quality in production, ...

le [ns] Observed much pulse rate in Box&Line PMT as expected from design.

After pulse rate

Preliminary

*Contamination of 2 or more p.e. still exists. 1 p.e. main pulse 0 0 0 1 8 1 Relative ratio to main pulse **HQE Super-K HQE Box&Line PMT** Raio of pulses to 1 After pulses Prob. if main pulse exists \rightarrow Negative values from

Relative (diagonal) and coincidence prob.

Box&Line PMT shows after pulses 10 times more than SK PMT's.

Pre pulse Pulse Reflection 2 After Pulse Pulse

- Study is still continued.
 - On several samples for both only single p.e. case, and high intensity case to find low gain pulse.
 - Utilize rate for quality control and BKG estimation in MC.

To Do on after pulse

- Transition of after pulse rate in long run will be measured for a year.
- Pulses with small gain is also identified with high intensity measurement.
- After pulse can be backgrounds to find decayed electron from muon in 2.2 us mean lifetime, coincidence physics event, etc.
 - In Super-K, after pulse is considered in analysis.
 - Need evaluation how much after pulse rate affects decayed electron tagging in MC.
 - Measured profile of timing, charge and frequency is required in each photodetector.

21/Jul/2014

Response and uniformity

Measure box&line PMT property at Kamioka in a few months.

- CE and QE uniformity
- Time offset and resolution, charge resolution
- Response by various magnetic field
- These response by different HV

- 8" HPD was arrived at TRIUMF.
 - ▶ Mounting and signal check were done.
 - ► Can measure optical property and response in water
- Details in "Status of the Photosensor Testing Facility" in calibration session by Tom.

Next stage of proof test

Install three of 20" high-QE Box&Line PMTs

- Installation in August 2014
- Restart from September 2014

Pre-calibration for proof test

- Measured 4 HPDs to select two candidates for installation.
 - Pre-selection on performance done
 - ▶ Peak to valley ratio between pedestal and 1 p.e. is sufficiently better than 1.2
 - ▶ Dark rate less than 35 kHz
 - Tested for continuous 3 days
 - Durability test with100 times HV power cycle

- Thee box&line PMTs waterproofed for proof test will be delivered soon to Kamioka.
 - Calibration and pre selection for a week
 - Compatible design with SK PMT
- Next update on 20" HPD in autumn 2014, and proof test in 2015.
 - New AD, amplifier, ...

Preamplifier R&D for HP

 Large junction capacitance is critical to read signal from 20mm Φ AD.

- R&D ongoing in several options
 - Half junction capacity with another AD manufacture process
 - Pixelized AD up to 5 segmentation and sum amp
 - Electric field redesigning with smaller focus area
 - Preamplifier development
- Initial preamplifier test with existing charge amp, and new boot strap amp were tried on 20mm Φ AD read out.
 - Single p.e. signal is barely confirmed.
 - Still problem about hit trigger, time response, white noise... and R&D just started

High voltage power for HPD

- Built-in HV power supply are being developed by four manufacturers.
 - One is used in current HPD, two are ready soon and other under design.
 - O Plan of durability test to estimate life time, and performance evaluation with implementation during R&D process from autumn 2014.
 - O Digital control line, instead of many analog lines, is under consideration.
 - ► Currently +10/GND power, HV/LV control, enable, over current, ... in analog
 - O Radiator design into water is important to avoid heating around AD.
 - Select cheap and reliable module with sufficient performance by test.
- Multi-(or single) channel HV power supply in waterproof front-end module is also another option considering redundancy.
 - New technology should be established due to difficulty of high 10 kV line.
 - Thin and tough long HV cable for 10 kV with few current, 2ch lines in each HPD
 - HV connector in high pressure water

21/Jul/2014

Test is required in high pressure water, and in HK prototype detector.

Approach to achieve few failure rate

What can we do in R&D?

- Initial failure is found by quality verification in factory or check and pre-test at Kamioka
- Early failure and performance are evaluated in EGADS proof test for a few years run

 A few months ~ years
- Accelerated degradation test for 15-30 years in Hyper-K
 - Power cycle test (HV, amp, etc.)
 - ▶ Tested in HPD (30,000 cycles) before proof test
 - Aging test (accumulated light, current, etc.)
 - ▶ Not yet done, but planned

- Design life, rating life
 - Selection of reliable parts, test
 - Reliability and experience
 - Maintenance option in HK

Performance overview

	8" HPD	High QE	20" HPD	20" Box&Line	SK PMT
Intrinsic resolution		-		0	0
Measured resolution	0	-	0	0	0
Dark rate	0	Δ	?	,	0
Collection Efficiency	98%	-	95%	93%	80%
B-filed tolerance	0	-	0	0	0
After pulse	0	-	0	Δ	0
Noise from electronics	Δ	-	Δ	0	0
Gain thermal dependence	Δ	-	Δ	0	0
Power consumption (Valve)	0	-	0	0	0
Power consumption (HV/amp)	0	-	0	0	0
Test status	In tank	In tank	(2015)	Soon	In tank
R&D progress	Update is planned	0	Ongoing (AD, amp)	Ready for test	0
Reliability	?	?	?	0?	0

21/Jul/2014

Summary

- Effect of after pulse from new photodetectors should be studied in MC simulation with measured profile.
- Preamplifier for 20" HPD is essential and difficult.
 Several options of AD readout are considered.
- Next validity test will start soon with 20" box&line PMTs. Durability test outside tank is also planned.
- There are still many study items. All evaluations will end by 2016 to select the best photodetector for Hyper-K.