Status of Hyper-K Event Reconstruction (fiTQun)

Mike Wilking
5th Hyper-K Meeting
21-July-2014

Overview

- Brief reminder of fiTQun capabilities
 - Many of these are typically not reflected in publicly shown Hyper-K sensitivities
- Recent fiTQun developments
- Hyper-K fiTQun integration

π⁰ Rejection

- fiTQun can use the **likelihood ratio** and π^0 mass to distinguish e^- from π^0
 - Identification of the 2nd photon has significantly improved
- 2D cut removes 70% more π^o background than previous algorithms
 - (2% loss in signal efficiency)
- This is now starting to be used by Hyper-K itself, but not most of the projections made by others
 - Performance should be confirmed with 20% PMT coverage and larger Hyper-K geometry

Likelihood Ratio vs π^0 Mass

π⁺ Fitter

- Pions and muons have very similar Cherenkov profiles
 - Main difference is the hadronic interactions of pions
- Ring pattern observed is a "kinked" pion trajectory (thin ring with the center portion missing)
- π^+/μ separation is now possible at Super-K!

ν_μ Disappearance: fiTQun vs apfit

- fiTQun signal efficiency is higher below 1 GeV
- Significant reduction of NC background due to π⁺ rejection
 - NCπ⁺ background has a very large uncertainty (>100%)
 - NCπ⁺ piles up near the oscillation dip
- This cut has **never** been incorporated in **any** Hyper-K sensitivity plot

ve Appearance Selection

	Signal $(\nu_{\mu} \rightarrow \nu_{e})$ CC)	fiTQun Selection					APFit Selection			
3.01 * 10 ²⁰ POT sin ² 20 ₁₃ =0.1		Bkgd (all)	Bkgd (π ⁰)	Bkgd (ν _μ CC)	Bkgd (beam v _e CC)	Signal $(\nu_{\mu} \rightarrow \nu_{e})$ CC)	Bkgd (all)	Bkgd (π ⁰)	Bkgd (v _µ CC)	Bkgd (beam v _e CC)
All other cuts	10.12	8.40	3.88	0.60	4.26	10.04	13.62	8.47	1.75	4.78
≤ 1 Michel	10.11	8.07	3.66	0.42	4.21	10.02	12.92	7.93	1.29	4.70
π ^o Cut	9.21	3.57	0.72	0.079	2.68	9.28	5.51	1.86	0.40	3.15
E _v < 1250 MeV	8.99	2.42	0.42	0.058	1.82	9.00	3.68	1.31	0.296	1.92

- Improved fiTQun µ/e separation allows a looser Michel cut
 - The v_e -CC signal is **increased by 15%** while the signal/background ratio remains nearly constant
- Loosening this cut does not have a large impact on the APFit sensitivity due to the large increase in v_{μ} background
- This has never been included in a Hyper-K sensitivity plot

New fiTQun Capabilities

High Energy Events

- Previously, fiTQun has been more focused on single-ring events below 1-2 GeV (T2K selection)
- However, interesting atmospheric neutrino events occur at much higher energies
 - Neutrino mass hierarchy resonance occurs at ~4-6 GeV
- High energy reconstruction can also provide benefits to certain long-baseline neutrino experiment configurations

Multi-ring Fitter Improvements

- Previous fiTQun ran every ring permutation up to 4 rings
- New fit sequence terminates branches if no improvement is observed
 - Up to 6 rings are now supported with less total CPU time
- Final hypotheses are refit to remove fake rings and improve PID
 - This is where muon fits are introduced

Improved Multi-Ring Performance

Atm-v MC 3.5GeV <e<sub>vis<7GeV</e<sub>	fiTQun Pre-refit	fiTQun Post-refit	APfit	
Average # of true rings found	2.81	2.65	1.86	
Average # of fake rings	1.08	0.26	0.14	

- fiTQun finds many more rings than APFit
 - However, fake ring rate is higher
- Final refit stage to remove fake rings works very well

Atm. V_eCC I π⁰ Selection

Atm. $V_{\mu}CC\ I\pi^{0}$ Selection

*14a SK4 Atm-v FCMC 1417days

Multiple-Scattering Muon Fit

- At high energies, muon scattering distorts the ring center
 - fiTQun assumes azimuthal symmetry
- Track is divided into multiple segments
 - Can now fit structure within rings

MS Fit Performance

Fit Resolution:

- Using the correct dE/dx is important when piecing together many segments
 - Using PDG range table gave a big improvement in momentum resolution

fiTQun in Hyper-K

Current Status

- Newest version of fiTQun contains several upgrades for Hyper-K
 - The default root output format is now much more user friendly
 - Matches the Super-K h2root output format
 - Geometry is automatically read from WCSim input file
 - Arbitrary cylindrical geometry is now supported
 - Hyper-K tank with arbitrary z-length is supported
- Additional improvements since the last code freeze:
 - Average quantum efficiency can now be tuned in the parameters file
 - PMT size will automatically be taken into account
 - Useful for Hyper-K near detectors: nuPRISM & Titus

fiTQun HK Performance

- Are reported at the previous meeting, reconstruction of vertex, direction, and PID is working well (close to Super-K values)
 - In theory, fiTQun should work well with minimal change when applied to HK
- However, significant momentum biases are observed
 - Now decided to do a full tuning of fiTQun to HK MC (WCSim)

Electron
Particle Gun
Bias &
Resolution

Reminder: fiTQun Components

$$L(\mathbf{x}) = \prod_{\text{unhit}} P(i\text{unhit}; \mathbf{x}) \prod_{\text{hit}} P(i\text{hit}; \mathbf{x}) \underbrace{f_q(q_i; \mathbf{x})} \underbrace{f_t(t_i; \mathbf{x})}$$

- A single track can be specified by a particle type, and 7 kinematic variables (represented above as the vector x):
 - A vertex position (X, Y, Z, T)
 - A track momentum (p)
 - A track direction (θ, ϕ)
- For a given **x**, a charge and time PDF is produced for every hit PMT
- The **charge PDF** is factorized into:
 - PMT & electronics response
 - Number of photons reaching the PMT
 - Predicted charge (µ)
- All 7 track parameters fit simultaneously

Predicted Charge (μ):

- Number of photons that reach the PMT
- Depends on detector properties (scat, abs, etc.)

Reminder: fiTQun Components

$$L(\mathbf{x}) = \prod_{\text{unhit}} P(i\text{unhit}; \mathbf{x}) \prod_{\text{hit}} P(i\text{hit}; \mathbf{x}) \underbrace{f_q(q_i; \mathbf{x})} \underbrace{f_t(t_i; \mathbf{x})}$$

- A single track can be specified by a particle type, and 7 kinematic variables (represented above as the vector x):
 - A vertex position (X, Y, Z, T)
 - A track momentum (p)
 - A track direction (θ, ϕ)
- For a given x, a charge and time PDF is every hit PMT
- The **charge PDF** is factorized into:
 - PMT & electronics response
 - Number of photons reaching the PMT
 - Predicted charge (µ)
- All 7 track parameters fit simultaneously

Calculating μ is the main challenge

Time PDF

Charge PDF

PMT Charge Response:

Property of the electronics and PMT properties

Predicted Charge (μ):

- Number of photons that reach the PMT
- Depends on detector properties (scat, abs, etc.)

 $\mu =$

Particle Track

PMT

U = mean charge seen by a PMT

$$\mu =$$

S = position along track

Particle Track

U = mean charge seen by a PMT

$$\mu =$$

Particle Track

Predicted Charge (µ)

Particle Track

PMT

Particle Track

PMT

Particle Track

0.08

Predicted Charge (µ)

Particle Track (e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p)

PMT

Predicted Charge (µ)

Particle Track $(e^{\pm}, \mu^{\pm}, \pi^{\pm}, K^{\pm}, p)$

electron

All PID information is encoded in

these histograms!

0.3 0.4 0.5 0.6 0.7

muon

(cm)

(cm)

Predicted Charge (µ)

Particle Track (e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p)

- Must tune:
 - Angular acceptance function
 - Transmission function
 - Quantum efficiency

80.0

0.06

0.02

0.4

0.3

0.2

0.1

 $\cos \theta$

 $\cos \theta$

Scattered Light

- More scattered light is detected for sources that are close to the wall
 - The same is true for PMTs near corners
- The scattered light in each PMT depends on:
 - Light source intensity
 - Track direction
 - PMT and source geometry
- Scattered light for each PMT is normalized to direct light
 - Accounts for the source intensity
 - Tabulate in advance: "Scattering Table", A_{scat}

A_{scat} (θ_{source} , φ_{source} , geometric variables) = $\frac{d\mu^{trairect}}{d\mu^{direct,iso}}$

Tuning Scattered Light

- Current scattering tables assume cylindrical symmetry
 - For now, we will keep this assumption for Hyper-K (even though it is not a cylinder)
 - Future: new scattering table algorithm is being developed to remove geometric dependence
- To tune, we need to record production point, detection point, and interactions of all photons in MC events
 - Originally, we modified SK MC (GEANT3) to extract this information
 - Now, we have modified HK MC (GEANT4) to extract the same information
- We will begin by making fiTQun work with HK MC in SK geometry mode
 - Then, we will move on to more difficult HK geometry

New Code for fiTQun Tuning

- Added two new classes:
 - WCSimOpticalPhotonTrackInfo
 - A singleton class that stores parent geant id, vertex, direction, and count of scatters and reflections for each optical photon
 - WCSimOpticalPhotonMessenger
 - A messenger class to enable or disable storing this information via a macro file flag:
 - /opInfo/Enabled true or false
- Set of functions in skqfitscat.cc to interface to class
 - Initscattable(), fillscattable(), writescattable()

Other Code Changes

- WCSim.cc:
 - initialize instance of singleton so that the messenger class is created
- WCSimRunAction.cc:
 - Calls initscattable() in begin of run
 - This creates the output TTree "sttree"
 - Calls writescattable() in end of run
 - Writes the TTree to file
- WCSimEventAction.cc:
 - Reset photon track info arrays in begin of event
 - Calls fillscattable() at end of event to fill root tree
 - This fills another entry for each photon that was detected by the PMT to the TTree

Other Code Changes II

WCSimSteppingAction

- Calls UserSteppingAction from new photon track information class
- This allows easier way of checking whether storing photon info is enabled

WCSimWCSD

- If photon info is enabled this stores the PMT hit and position of PMT hit (for convenience) in photon info class tagged to the photon track id in G4

Timescales

- Need to generate 1000 M 3 MeV electron events for tuning
- Scripts to generate these events have been written to run this on scinet (U Toronto)
 - Output size is expected to be 1.5 TB
- Expect jobs to be queued this week
- Look at output over next two weeks ~ mid Aug. should have some tables
 (SK)
 - Some additional analysis code is needed to extract the attenuation function and PMT angular acceptance from this output
- Will also do for HK geometry on this time scale
 - We expect a fully tuned fiTQun for Hyper-K to be ready in September

Conclusion

- fiTQun provides many new analysis tools that have not yet been used
 - We should consider employing these in official Hyper-K sensitivities
- Continuous development is taking place in the context of Super-K and T2K
 - Improvements can then be immediately used in Hyper-K
- Integration of fiTQun on Hyper-K MC still needs some tuning
 - New scattered light table
 - Tuning of attenuation length, PMT angular acceptance, and quantum efficiency is needed
- Initial, physics-ready version of fiTQun for HK expected in September

Supplement

Scattering Tables

- Take advantage of cylindrical geometry
- A_{scat} will depend on
 - Source direction (θ_s, ϕ_s)
 - Source position $(\Theta_{ts}, \mathbf{R}_s, \mathbf{Z}_s)$
 - Z_t for PMTs on the sides
 - $A_{\text{side}}(\theta_s, \phi_s, \Theta_{\text{ts}}, R_s, Z_s, Z_t)$
 - Rt for PMTs on the ends
 - $A_{end}(\theta_s, \phi_s, \Theta_{ts}, R_s, Z_s, R_t)$
- Must tabulate 6-dimensional scattering tables using the detector MC

Tuning Example (500 MeV electrons)

- 500 MeV electrons traveling in the x-direction
 - Starting position at various ToWall values
- Notice at the center of the tank, bias is small
 - Consistent with Okajima-san's studies
- Oddly, both near and far ToWall agree well, but disagree with center of the tank
- Many of these plots exist, varying attenuation length, scattered light fraction, etc.
 - This was not successful; must wait for full tuning

