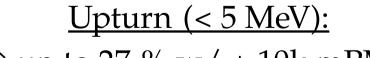


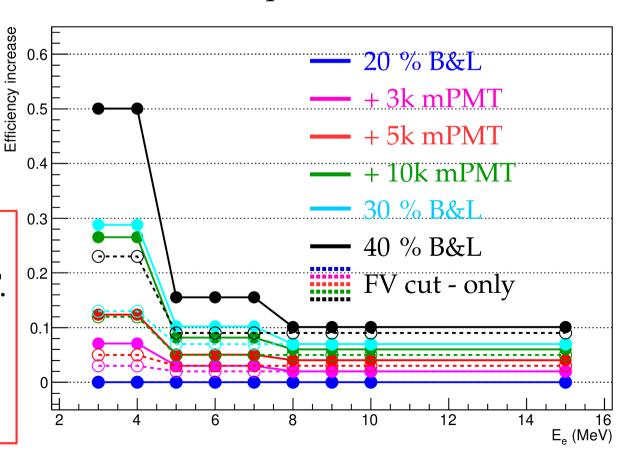
Towards a unified Low Energy software


Benjamin Quilain

(Laboratoire Leprince-Ringuet, CNRS/Ecole polytechnique)

HK software meeting, 2020/05/28,

Status of low energy


- Reconstruction side:
 - LEAF only has vertex reconstruction.
 - BONSAI is not perfectly tune for HK \rightarrow Worse than LEAF.
- Analysis side :
 - We do not have a LE software for HK (example : Solar-v selection).
 - We presented a 1st analysis using 2 solar cuts: FV and external background cut.

 \uparrow up to 27 % w/ + 10k mPMT.

Day-night (5 - 8 MeV):

 \uparrow up to 9 % w/ + 10k mPMT.

Goals for mid-terms

• Reconstruction side:

- Upgrade LEAF to reconstruct the e direction and energy.
- Upgrade LEAF to reconstruct other variables used for cuts : goodness of fit, dirKS etc.

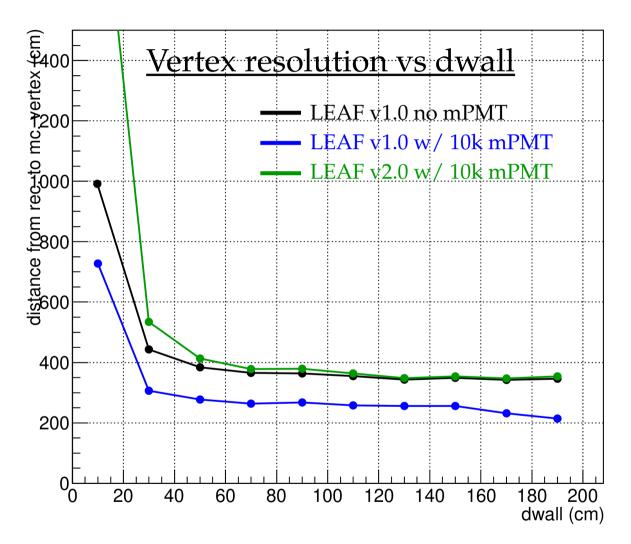
• Analysis side :

- Have a unified sofware to realize the Solar neutrino analysis.
- Long-term: develop softwares for other LE analyses (SRN etc.).
- Other: other long-term goal \rightarrow Have a proper background simulation

Goals for mid-terms

- Reconstruction side :
 - Upgrade LEAF to reconstruct the e direction and energy.
 - Upgrade LEAF to reconstruct other variables used for cuts:
 goodness of fit, dirKS etc.
 Today's presentation

• Analysis side :


- Have a unified sofware to realize the Solar neutrino analysis.
- Long-term: develop softwares for other LE analyses (SRN etc.).
- Other: other long-term goal \rightarrow Have a proper background simulation

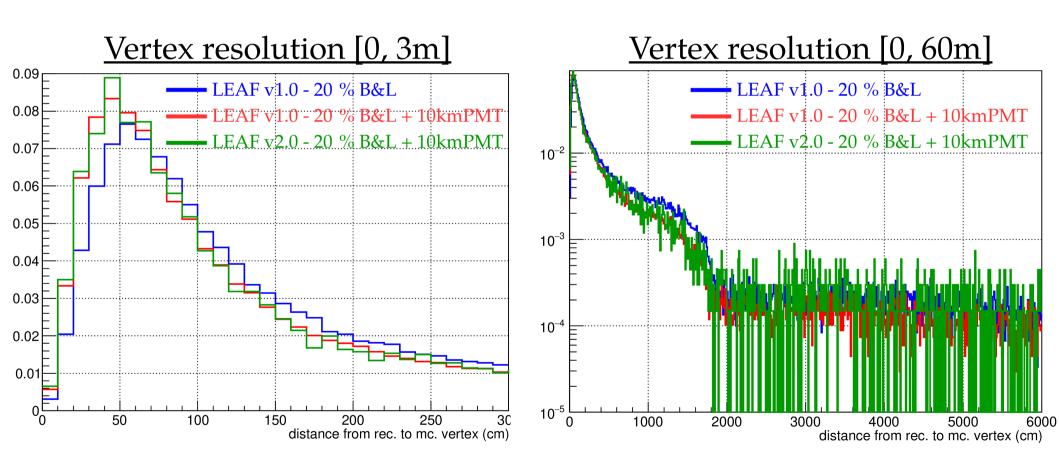
Moving towards LEAF v2.0

- Guillaume has already implemented into LEAF a reconstruction of :
 event direction, goodness of fit and dirKS → Same formulae as BONSAI.
- Guillaume has also re-writt^{¬¬¬¬¬} \ T \ AF to:
 - Clean the code → Using additional classes and methods.
 - Decrease the CPU-time for event processing.
- <u>To use it</u>: need to validate Guillaume implentation, and integrate it in a new release (let's call it v2.0).
- We will therefore first compare the following configurations:
 - 20 % B&L PMTs + 10k mPMT with mPMT masked.

Validation of LEAF v2.0

• First test of the algorithm (50,000 3 MeV electrons):

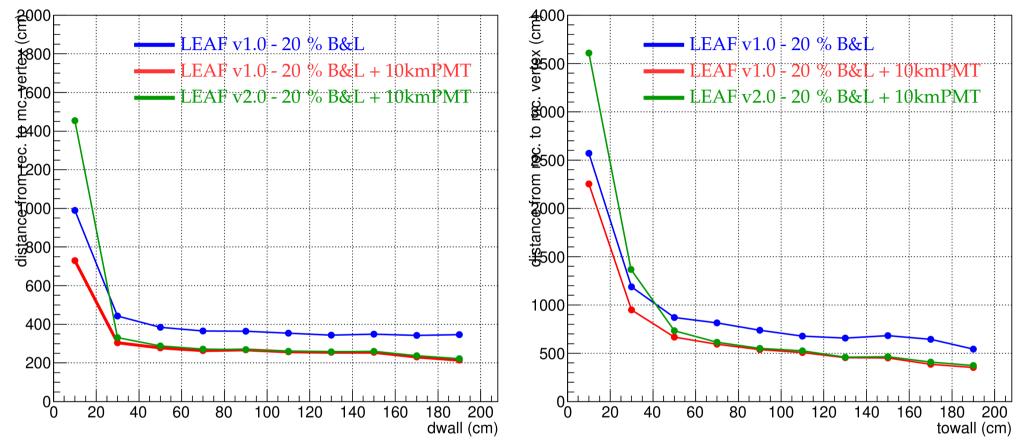
- LEAF v2.0 using mPMTs does worse than v1.0 using B&L-only.
 - → Large disagreement, especially at small dwall.


Bug fix

- Found a bug in the hit loop for hybrid PMT case (AnalyseEvent method)
 - \rightarrow Count 2 times the B&L hits if we use multi-PMTs \rightarrow Solved!
- Moved/rename variables to make the change of parameter easier.
 - \rightarrow LEAF proceed first to a coarse grid search with pre-defined grid in the tank (and in time) \rightarrow Keep the T (= tolerance) best candidate.
 - → Then, 2 choices: do several more refined grid searches around the candidates, or a direct MINUIT minimization.

	Parameters	
Coarse grid search	Step size = 300 cm, Tolerance = 60 Timing limits : -50ns \rightarrow 50ns around trigger	
Step by step or direct MINUIT	Direct MINUIT	
Use PDF limits	Yes: $-700 \to +1000 \text{ ns.}$	
Use directionality	No	

Validation of LEAF v2.0 – after bug fix

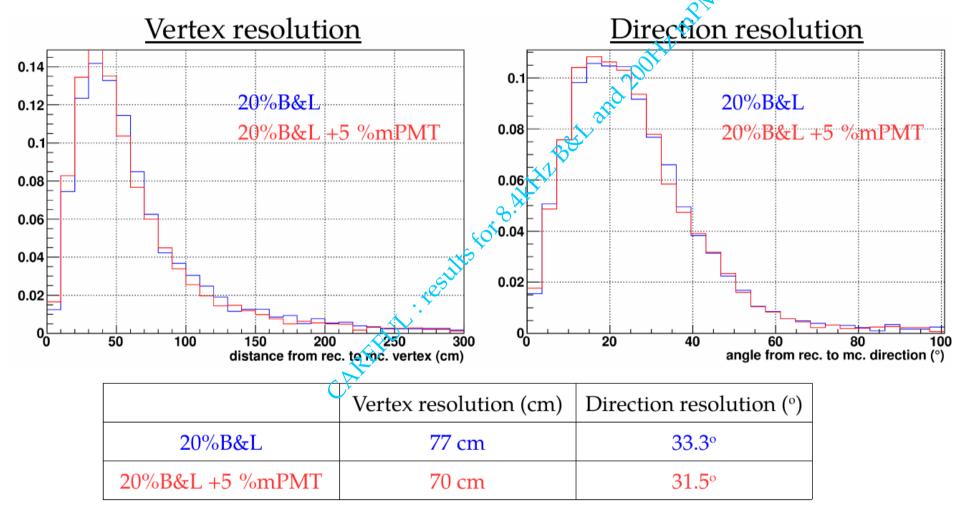

- Generated 50,000 3 MeV events close to the wall for both versions
 - → Fitter as especially sensitive near tank wall: perfect for validation.
 - → Compared 20k B&L + 10k mPMT versions.
 - \rightarrow After bug fix

Almost perfect agreement between the two versions.

Validation of LEAF v2.0 – after bug fix

Compared now as a function of dwall / towall :

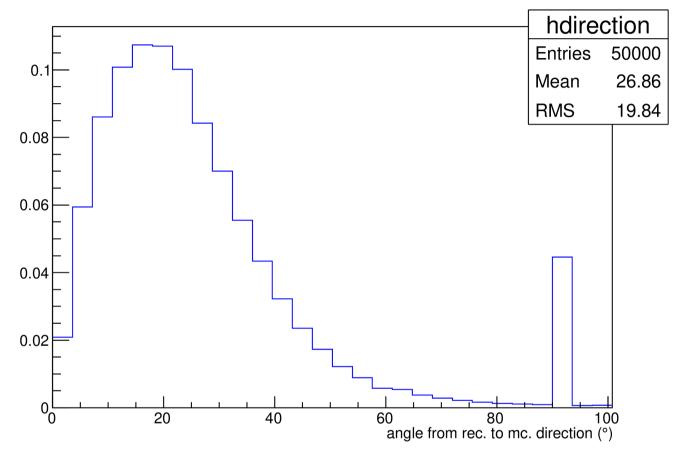
- Differences at very small dwall (< 30 cm) & towall (< 40 cm).
- <u>Possible causes</u>:


dark rate issue (should be indicated in the code), PDF differences...

→ To investigate

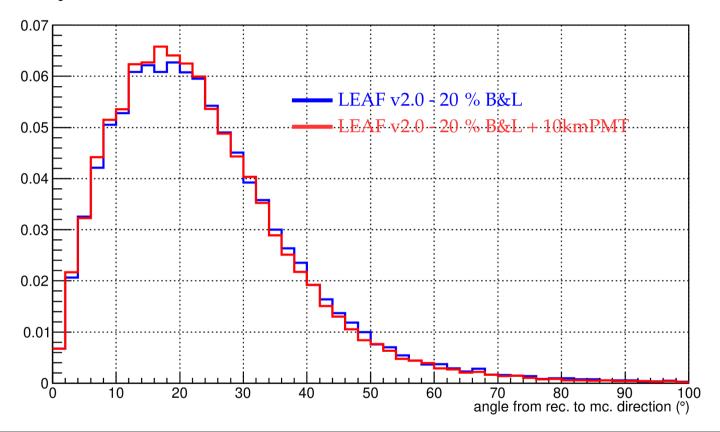
Reconstruction of the direction: BONSAI10

Reconstruction of direction: let's study its value for 10 MeV electrons uniformly located in the tank.


• <u>BONSAI</u>: average direction resolution is 33 degrees using 20k mPMT:

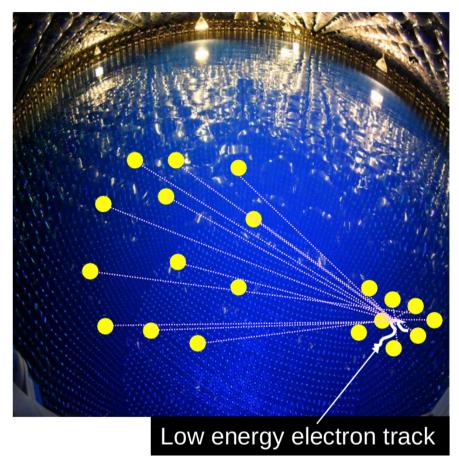
Let's check this with LEAF now!

Reconstruction of the direction: LEAF

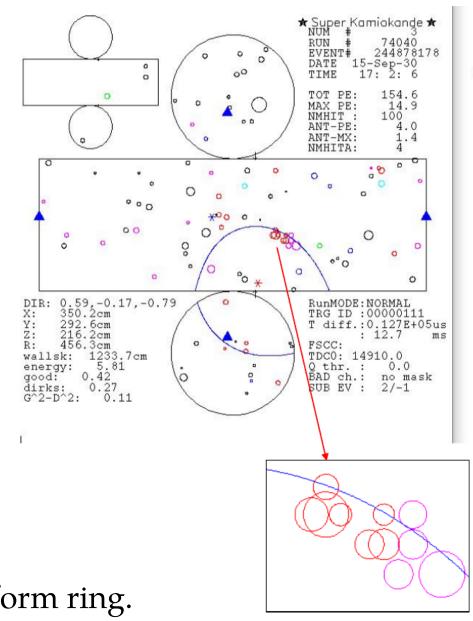

• <u>LEAF</u>: 10 MeV electrons with 20k B&L + 10k mPMT.

- Direction resolution (68 % CI) = 34.2 cm
- Spike at 90 degrees \rightarrow Corresponds to cases where the reconstructed direction is not found (rec vector = (0,0,0))
 - \rightarrow I checked, this is cases where event is reconstructed out of HK.

Reconstruction of the direction: LEAF


- LEAF: 10 MeV electrons with 20k B&L + 10k mPMT.
 - → <u>Using only events reconstructed in HK :</u>

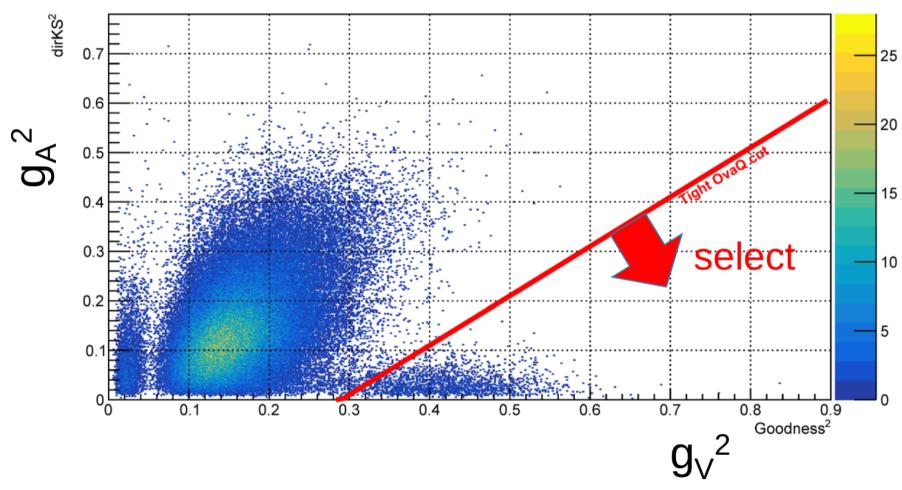
	Vertex resolution	Direction resolution
20 % B&L	62 cm	29°
20 % B&L + 10k mPMT	50 cm	28°


Goodness of fit & dirKS LEAF

Reminder: Nakahata-san talk for SK (2020/01/20 physics meeting):

Because of the large multiple scattering, Cherenkov right can hit nearby PMTs.

Data with dwall > 5m & Ee > 5 MeV


• <u>dirKS</u>: higher dirKS <=> More uniform ring.

Goodness of fit & dirKS LEAF

Reminder: Nakahata-san talk for SK (2020/01/20 physics meeting):

Dwall > 5m and E > 5MeV

dirKS 2 vs Goodness 2 (E > 5 MeV, t_diff > 100 μ s, d_wall > 5m)

- Cut for large goodness of fit, but small dirKS (not-so-uniform ring).
 - \rightarrow OvaQ = goodness² dirKS².

Goodness of fit & dirKS LEAF

• <u>LEAF</u>: 10 MeV electrons with 20k B&L + 10k mPMT.

- <u>Higher goodness of fit using mPMT → Ideal for the OvaQ cut.</u>
 - \rightarrow But values of goodness very different than SK! \rightarrow To investigate.
- dirKS is not highly changed \rightarrow I am surprized.
 - → Overall OvaQ may be increased for signal w/ mPMT.

Conclusions & to do list

- <u>Major message</u>: LEAF is now able to reconstruct electron direction, as well as to provide a goodness of fit and dirKS
 - → Excellent work by Guillaume.
 - → Corrected major bug causing differences between LEAF v1.0 & v2.0
 - → Agreement is almost perfect.

• Incoming work:

- Investigate cause of ≠ between LEAF v1.0 and v2.0 at small dwall.
- Investigate cause of ≠ in goodness of fit with SK results.
- Dig deaper into the code to check if we can improve direction resolution, goodness of fit & dirKS better using mPMTs.
- Compare BONSAI & LEAF direction of resolution for same DR.
- Test the energy reconstruction implemented by Guillaume.

Discussions during the meeting

- BONSAI does not have any direction/energy reconstruction. It is done in another software in SK.
- Guillaume implemented a simplified version of the reconstruction of the direction.
- For energy reconstruction, it is done jointly with direction. There is a sequential fit of direction \rightarrow energy \rightarrow direction \rightarrow energy ...
 - → We may move towards a joint energy/reconstruction fit.
 - → Guillaume has not tuned the energy reconstruction parameters (basically, relation between Etrue and Evis, as a function of dwall).
 - → There is also another new algorithm called FLOWER for energy rec.
- Goodness of fit and dirKS are just placeholder \rightarrow We should check.

Discussions during the meeting

- The first thing would be to understand the reconstruction of direction.
- Then, try to check out the energy reconstruction.