Super-K: High Energy

Introduction

- High-energy:
 - Particle interactions with visible energy between ~100 MeV and 100 TeV
- Today I will mostly focus on atmospheric neutrino related physics at Super-Kamiokande but the high-energy working group studies several topics
 - Atmospheric neutrino flux
 - Atmospheric neutrino oscillations
 - Neutrinos with the T2K beam (See M. Hartz)
 - Nucleon Decay
 - Astrophysical Neutrinos
- This talk will highlight a few recent results
 - Neutrino Oscillations
 - Indirect WIMP Searches

Primary Cosmic Ray Flux

Atmospheric Neutrino Generation

☐ Cosmic rays strike air nuclei and the decay of the outgoing hadrons gives neutrinos

$$P + A \rightarrow N + \pi + + x$$

$$\downarrow \mu + \nu_{\mu} \rightarrow e + \nu_{e} + \overline{\nu}_{\mu}$$

- ☐ Isotropic about the Earth
 - □ Path length to the detector spans 10 10,000 km
 - ☐ Unlike beam experiment we don't know the true direction of ATM nus
- Both neutrinos and antineutrinos
 - about 30% of the final samples are antineutrinos
- □ Spans many decades in energy ~100 MeV 100TeV+
- Excellent tool for broad studies of neutrino oscillations
 - ☐ Access to sub-leading effects with high statistics

Atmospheric Neutrinos As Signal

 \square \rightarrow hierarchy

 \Box Strength coupled to θ 13

Atmospheric Neutrinos As Background

Understanding and characterization of these backgrounds is key for future measurements

Neutrino Oscillations

>> Definite flavor eigenstates are mixture of eigenstates of hamiltonian

$$|\mathbf{v}_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\mathbf{v}_{i}\rangle \qquad U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
Flavor Eigenstate

>> For two neutrinos in vacuum:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right) \qquad \left[\frac{eV^2 km}{GeV}\right] \qquad \Delta m^2 \equiv m_2^2 - m_1^2$$

>> Need at least one non-zero mass eigenvalue

 \rightarrow Non-zero mixing angle θ

Baseline

Two-Flavor Atmospheric Oscillations

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2} 2\theta \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E}\right) \quad \left[\frac{eV^{2} km}{GeV}\right] \qquad \Delta m^{2} \equiv m_{2}^{2} - m_{1}^{2}$$

$$0.5 \qquad 0.6 \qquad 0.5 \qquad 0.4 \qquad 0.3 \qquad 0.2 \qquad 0.1 \qquad 0$$

$$1 \qquad 10 \qquad 10^{2} \qquad \text{Energy [GeV]}$$

Upward-going events have opportunity to oscillate away $\nu_{_{\mu}}\!\to\!\nu_{_{\tau}}$ is the dominant oscillation mode at SK

Super-Kamiokande: Introduction

- □ 22.5 kton FV Volume
- ☐ Ring Imaging Water Cherenkov detector
- □ 11,1146 20" Phototubes
- □ Data taken over four periods since 1996

- ☐ SK discovered atmospheric neutrino oscillations exploiting the disappearance of upward-going muon events
- Event samples are classified by
 - □ Number of rings (**Single-** or **Multiple-**)
 - \square PID of out-going lepton (e- or μ -like)
 - Event energy is **fully** or **partially** contained
 - ☐ Upward-going muons
- ☐ Today: **3903 days of atmospheric data**
 - □ ~34,000 Events
- Currently statistics limited
- No net magnetic or electric fields
- ☐ Sitting at 2.5 degrees off-axis of the T2K beam

Electron and Muon PID at Super-K

- Particle ID is based on both the cherenkov opening angle and the observed ring pattern
- Probability that a muon is mis-reconstructed as an electron is less than 1%
- Expect very low v_{μ} contamination in the single-ring e-like samples and vice versa

Neutrino Interactions

Event Topologies

- Fully Contained events
 - Average energy ~ 1 GeV , leave no light in the outer detector
 - Divided into several samples based on number of visible rings and their PID
- Partially Contained events
 - Initial vertex is within the SK fiducial volume but with a particle exiting into OD
 - Average Energy ~ 10 GeV
- Upward-going muons
 - Neutrino interaction in the surrounding rock with an entering muon
 - Average Energy ~100 GeV

Zenith angle & lepton momentum distributions : SK-I+II+III+IV

Neutrino Oscillations

v_{τ} Events at Super-K

- Many light producing particles
- Most events are deep inelastic scattering interactions

- Complicated event topology complicate identification of the leading lepton
 - Use a Neural Network procedure
 - 80% efficient for signal
 - » Negligible primary flux
 - Observed tau events would be oscillation induced

GOAL : Observe $\nu\tau$ events in the atmospheric data How inconsistent is the "no appearance" hypothesis?

Times (ns)

Fit Results, 2806 days

If no $v\tau$ appearance, $\beta = 0$

$$Data = \alpha(\gamma) \times bkg + \beta(\gamma) \times signal$$

Result	Background	Signal
SK-I	0.95	1.27
SK-II	0.96	1.47
SK-III	0.94	2.16
SK-I+II+III	0.94 ± 0.02 1.42 ± 0.	
DIS ∨	1 10 + 0 05	

- ☐ Tau signal clearly appears in upwardgoing region
- lue Tau normalization fits to 1.42 imes expectation

This corresponds to 180.1 ± 44.3 (stat) +17.8-15.2 (sys) events a 3.8σ excess (Expected 2.7 σ significance)

10/5/2012

R.Wendell (ICRR)

Neutrino and Anti-neutrino events at Super-K

- In principal SK cannot distinguish between neutrino and anti-neutrino interactions on an event-by-event basis
- However, differences in the fluxes and cross sections (energy depenent) and the effects of pion absorption in water change the relative composition the event samples
- It is possible to study neutrino and antineutrino oscillation separately!

ad hoc CPT Violation Test Results

ν	Best Fit
Δm^2	$2.1 \times 10^{-3} \text{ eV}^2$
sin² 20	1.0
311 20	1.0
	Best Fit
$\frac{1}{V}$ $\Delta \overline{m}^2$	

- Essentially the underlying SK MC can be oscillated separately between neutrinos and antinteurinos when fitting the data
 - (Anti-nu)MC^{osc} + (nu) MC^{osc} =? Data
- No evidence seen for a difference in the oscillation of neutrinos and oscillations seen
 - No adhoc CPT violation indicated in SK data

Status of Neutrino Oscillations

Atmospheric

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

Hierarchy

Hierarchy

Mixing between all three neutrino flavors has been observed

$$\theta_{12} = 33.6 \pm 1.0^{\circ}$$

$$\theta_{13} = 9.1 \pm 0.6^{\circ}$$

$$\theta_{23} = 45 \pm 6^{\circ} \text{ (octant?)}$$

Two Mass Differences

$$\Delta m_{12}^2$$
 ~ 7.6e-5 eV²

$$\blacksquare$$
 $|\Delta m^2_{32}| \sim 2.4e-3 \text{ eV}^2$ (hierarchy?)

- \blacksquare CP-phase , δ cp remains unkown
- Absolute value of mass states is unknown

Roger Wendell 19

Pure oscillation probabilities ~100 km

- In the presences of the now large $\theta_{_{13}}$ resonant enhancement of the $P(v_{_{\mu}} \rightarrow v_{_{e}})$ oscillation probability occurs via matter interactions
- Resonance occurs only for (anti-)neutrinos under the Normal (Inverted) Hierarchy. Effects on total event rate are roughly halved going to the IH

2012.8.22

Putting it all together - ThreeFlavor Oscillations

Hierarchy	Fit Result
Normal	556.7 / 477 dof
Inverted	555.5 / 477 dof

 χ 2min (NH) - χ 2min (IH) = 1.5

- Weak hints for non-maximal mixing
- Weak preference for the inverted hierarchy
- Slight indication of $\delta_{cp} \sim 3\pi/2$
- Statistics limited!

Atmospheric Neutrinos as Background: Indirect WIMP Searches

- Currently looking at the Galactic center, halo, Sun and Earth
- Atmospheric neutrinos(GeV)
 produced by cosmic rays are back
 ground.
- Indirect detection allows a sensitive probe of a wide range of dark matter masses
- *Assumptions about the source distribution and neutrino production mode are required (annihilation, decay, what channels)

Repeat this process for many masses and annihilation scenarios

- No indication of an allowed WIMP excess of neutrinos between for WIMP masses between 500 MeV and 800 GeV
- This can be converted into a limit on the DM self annihilation cross-section (averaged over an assumed velocity distribution)

Limits for the Search for a Neutrino excess from the GC

WIMP-Induced Neutrino Events from the Sun

10 GeV Annihilation signal int b-bbar from the sun

- The same kind of search can be done assuming DM annihilation in the sun
 - Fit atmospheric neutrino data in bins of the direction to the sun
- Focus on lower mass WIMPS
- No evidence for an excess of neutrino events coming from the sun

WIMP Nucleon Cross-section results

- Assumes standard dark matter halo profile, local density of 0.3 GeV/cm3
- Maxewellian velocity distribution v ~ 270 km/s
- Assumption of equilibrium between dark matter capture and annihilation within the sun needed to relate excess neutrinos to WIMP-Nucleon σ

Summary

- Super-Kamiokande has access to a wide variety of physics using its high-energy samples
- Currently all oscillation measurements are statistically limited
 - Though this means the future is potentially bright it will take time to get there
 - No indication for a deviation from maximal atmospheric mixing nor for a preferred mass hierarchy so far
- Searches for a both a diffuse excess of neutrinos from the galactic center and a more direct source from dark matter annihilation in the sun have yielded only limits
 - Efforts continue to push thresholds as low as possible to test the lightest WIMP mass scenarios

Back Pocket

Super-Kamiokande: Generations

[☐] Hyper-K design is 20% photocoverage with SK-IV style electronics

Search for Diffuse Dark Matter Annihilation

$$\chi + \chi \rightarrow \nu + \nu$$

» Distinctive signatures:

Monoenergetic $\mathbf{E}_{v} = \mathbf{M}_{\chi}$ Isotropic

- Search in atmospheric neutrino data from SK-I, -II & -III livetime: FC/PC 2806 days, UPMU 3109 days
- Simulate signal in NUMU, NUE and NUTAU
- FIT: for each tested WIMP mass, find the best configuration of ATM MC + DM signal that would match DATA the best
- wing all SK samples: e-like + mu-like FC+PC+UPMU (wide energy range)

EXAMPLE: illustration of **5.6 GeV** WIMP annihila1tion signal

Fit Results

- >> FIT based on E_{vis} & cosθ distr., systematics included (120 sys. terms fitted)
- >> No allowed excess of DM-induced v's for M_{χ} in range 3GeV 3 TeV

Limit on $\langle \sigma V \rangle$

- Focus on signal arising from Milky Way halo (diffuse flux)
- Conservative upper limit on WIMP total self-annihilation cross section

$$\frac{d\phi_{\Delta\Omega}}{dE} = \frac{\langle \sigma_A \cdot V \rangle}{2} J_{\Delta\Omega} \frac{R_{sc} \rho_{sc}^2}{4\pi \cdot m_{\chi}^2} \frac{dN}{dE}$$

 $\mathbf{J}_{\Delta\Omega}$ integrated intensity over all sky related to DM halo density profile; includes information about DM density cusp in GC

(*) H.Yuksel et al., Phys. Rev. D76, 123506 (2007), arxiv: 0707.0196 [astro-ph]

How many \mathbf{v}_{τ} are expected at Super-K?

$$\boldsymbol{U} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Atmospheric

Solar

- If θ_{13} > 0, Multi-GeV resonant enhancement of $\nu_{\mu} \leftrightarrow \nu_{e}$ is expected for upward-going neutrinos
 - \blacksquare Look like τ events, but SK data are consistent with
 - θ_{13} = 0 so this effect is considered as a systematic
- Solar oscillations exist $(\theta_{12} > 0)$ so $v_e \leftrightarrow v_\tau$ is expected at

low energies (< 500 MeV), well below τ production

threshold

For 4.1 years / 22.5 kton $\sin^2 2\theta = 1.0$, $\Delta m^2 = 2.4 \ 10^{-3} \ eV^2$, expect ~78 v_{τ}

v Oscillations:

$$\left|\mathbf{v}_{\alpha}\right\rangle = \sum_{i} U_{\alpha i}^{*} \left|\mathbf{v}_{i}\right\rangle$$

 $|\mathbf{v}_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\mathbf{v}_{i}\rangle$ v mass eigenstates \neq flavor eigenstates

$$\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Atmospheric

Solar

Additionally two mass splittings: Δm_{12}^2 , Δm_{13}^2 , δ_{cn}

To first order experiments are sensitive to oscillations between two active v's:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 L}{E}\right) \qquad \left[\frac{eV^2 km}{GeV}\right] \qquad \Delta m^2 \equiv m_2^2 - m_1^2$$

Two-Flavor Analysis

- High statistics
 - > 28,000 ν events

Best Fit: (physical): $\Delta m^2 = 2.1 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1.0$ $\chi^2 = 468 \text{ / } 418 \text{ d.o.f}$

Systematic Errors

Systematic uncertainties for expected ν_{τ}	LH (%)	NN (%)		
Super-K atmospheric ν oscillation analysis 21.6		20.2		
(23 error terms)				
Tau related:				
Tau neutrino cross section	25.0	25.0		
Tau lepton polarization	11.8			
Tau neutrino selection efficiency	0.5			
LH selection efficiency	_			
NN selection efficiency –		3.0		
Total:	32.6	34.4		
Systematic uncertainties for observed $ u_{ au}$	LH (%)	NN (%)		
Super-K atmospheric ν oscillation analysis:				
Flux up/down ratio	6.5	5.7		
Flux horizontal/vertical ratio 3.6		3.2		
Flux K/ π ratio 2.4		2.8		
NC/CC ratio 4.3		3.8		
Up/down asym. from energy calib. 1.4		< 0.1		
Oscillation parameters:				
$0.0020 < \Delta m_{23}^2 < 0.0027 \mathrm{eV}^2$	+5.8	+8.8		
	-2.6	-3.3		
$0.93 < \sin^2 2\theta_{23} < 1.00$	-3.3	-3.9		
$0.0 < \sin^2 2\theta_{13} < 0.15$	-20.6	-17.9		
Total:	+10.7	+12.0		
	-22.9	-20.3		

Systematic errors on the expected number of $v_{_{\scriptscriptstyle T}}$

 \rightarrow 78.4 \pm 27 (syst.)

Systematic errors on the observed number of v_{τ}

$$ightarrow$$
 134 $^{+16.0}_{-27.2}$ (syst.)

SK-IV Detector Performance

- Sood Particle ID permance
 - 1% MIS PID Probability
- Absolute energy scale uncertainty has been narrowed to less than about 2%
 - ~ 1% above 1 GeV

Single-Ring Atmospheric v Data 1000 **Preliminary** Prediction Lepton momentum 500 500 SK Data $\nu_{\shortparallel} \rightarrow \nu_{\tau}$ Number of Events < 1330 MeV Sub-GeV e-like Sub-GeV µ-like 600 600 400 400 > 1330 MeV 200 200 Multi-GeV e-like Multi-GeV μ-like + PC "Longer" Baseline: ~10,000 km cos zenith cos zenith 30 km

- >> Upward going μ -like events are disappearing!
 - Not being compensated by an increase in the e-like event rate

Fitting Technique

- >> Use an un-binned two-dimensional likelihood fit to extract the most from the data
- >> Previous analysis (PRD 2006) fit only in one dimension
 - Events with NN output > 0.5 in this plot

- Tau and Background events appear in dramatically different regions of the plot
 - The signal appears exclusively in the <u>upward-going</u> direction

Deep Inelastic Scattering

- Neural network is very good at selecting DIS events
 - Fit is sensitive to uncertainties in the scattering cross section
- To balance the fit and enable it to find the correct number of tau events we also include the DIS/non-DIS ratio as an additional fitting parameter

Something Exotic Going On?

CPT:
$$P(\nu\mu \rightarrow \nu\mu) = P(\overline{\nu}\mu \rightarrow \overline{\nu}\mu)$$

- We expect the disappearance probabilities of neutrinos and antineutrinos to be the same by CPT
- ☐ Can we test for differences in the disappearance probabilities with Super-K?
 - ☐ YES
 - Neutrinos and Antineutrinos are present in the flux
- ☐ However
 - ☐ No net magnetic or electric fields at SK
 - ☐ Cherenkov production is the same for I±
 - □ No event-by-event sign discrimination

Neutrino and Anti-neutrino Cross Sections

- ☐ Cross sections differ as a function of energy
 - □ Varying by a factor of x2-3
- Expect more neutrinos than antineutrinos
 - ☐ Relative compositions will vary as a function of energy
 - ☐ Different sensitivities to L/E

In the End, the technique is simple

Atmospheric Neutrino Fluxes

- ☐ "Conventional" flux used to discover neutrino oscillations
 - ☐ Wide variation in L/E
- ☐ Absolute flux known to ~20%
- ☐ Shape known to ~5-10%

- ☐ "Prompt" Flux from the production and decay of charmed mesons:
- Currently unmeasured

Super-K Data: Electron-like and Muon-like Events

A Word about systematic errors

- ☐ The standard Super-K disappearance analysis is currently statistics limited
 - ☐ Will continue for another 30 or 40 years
 - lacktriangle This limitation naturally extends to the v, \overline{v} separated analysis
- ☐ Nonetheless 122 Sources of systematic error are considered

Error	Range	Error %	Comment	
νμ / νμ Flux Ratio	0.1 < E < 1 GeV	2	Taken as the difference between flux models	
	1 <e 10="" <="" gev<="" td=""><td>6</td></e>	6		
	10 GeV < E	6		
νμ / νμ	CCQE	~10	Difference of cross section models as a function of energy	
Cross Section Ratio	Single Meson Production	~10		
Flux Normalization	E < 1 GeV	25	Energy dependent	
	1 GeV < E	7	in these ranges	
Decay Electron Tagging	-	1.5	Single efficiciency	

$$\frac{d\phi_{\Delta\Omega}}{dE} = \frac{\left\langle \sigma_A \cdot V \right\rangle}{2} J_{\Delta\Omega} \frac{R_{sc} \rho_{sc}^2}{4\pi \cdot M_{\chi}^2} \frac{dN}{dE}$$

 ${m J}_{\Delta\Omega}$ is integrated intensity over all sky $\Delta\Omega$ =4 π , depends on DM halo density profile

Comparison with IceCube

90% CL UPPER LIMIT livetime x detector effective area x received DM signal intensity (proportional to DM 10-17 Phys. Rev. D76, 123506 (2007) above IceCube-22 lines is Phys.Rev. D84, 022004 (2011) 10-18 density squared) x fraction of dN/dE excluded 10-19 10⁻²⁰ 10⁻²¹ \wedge 10⁻²² \wedge 10⁻²³ IceCube Super-K: SK1+2+3 (1996-2008) .W*W-/μ*μ SK = 3109.6 live days $x \sim 10^3 \,\text{m}^2$ effective area IceCube = 276 live days x ~105 m2 effective area x ~0.006 of SK's received intensity Super-K 10-24 x 0.2 fraction of dN/dE 10-25 natural scale - expectation for DM as thermal relic 10-26 SK / IceCube = ~ 93
for mu+mu- 200 GeV WIMP 10³ 10⁴ M, [GeV/c²] DM halo 103 IceCube sky coverage DM-ind neutrino multiplicity Moore Einasto 10² M,=300GeV Kravtsov 10³ ••• ьБ Gev Gev 100, E2 dN/dE [GeV] fceCube sensitive ΔRA-180* RAHE" here 10 10^{-2} 10-2 10^{-3} 10-3 10-1 10° 101 10² 10-1 10²

E, [GeV]

IceCube does not see GC

r [kpc]

- Single π^+ production is slightly favored at lower primary cosmic ray energies (+20%)
- \square Multiple π production at higher energies. Slightly more π^+ than π^- production, and are more energetic on average
- Results in more neutrinos since

- At higher energies the muons increasingly reach the ground before decaying
 - ☐ Lose energy in the Earth before decay
 - □ or are captured
 - lacktriangle Decreased high energy v_e flux

L/E Analysis: SK-I + II + III

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 (\text{eV}^2)L(\text{km})}{E_{\nu}(\text{GeV})}\right)$$

- Construct a sample with good resolution (> 70%) in L/E
- Use FC and PC Samples
- High purity in CC $v_{_{_{I\!I}}}$ interactions
 - > 93% for all samples and SK geometries

Best Fit: Oscillations (physical):

$$\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta = 1.0$
 $\chi^2 = 119 / 126 \text{ d.o.f}$

v Decoherence ruled out at 4.4 σ

ν Decay ruled out at 5.4 σ

