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Introduction 
 High-energy: 

● Particle interactions with visible energy between  ~100 MeV and 100 TeV

 Today I will mostly focus on atmospheric neutrino related physics at Super-
Kamiokande but the high-energy working group studies several topics

● Atmospheric neutrino flux 
● Atmospheric neutrino oscillations 
● Neutrinos with the T2K beam (See M. Hartz)
● Nucleon Decay
● Astrophysical Neutrinos

 This talk will highlight a few recent results
● Neutrino Oscillations 
● Indirect WIMP Searches



  

Primary Cosmic Ray Flux 
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Atmospheric Neutrino Generation 

 Cosmic rays strike air nuclei and the decay of the out-
going hadrons gives neutrinos 

P + A  → N + π+  + x
                             µ+ + ν

µ
   →  e+ + ν

e
 + ν

µ

 Isotropic about the Earth 
 Path length to the detector  spans 10 – 10,000 km 
 Unlike beam experiment we don't know the true 

direction of ATM nus

 Both neutrinos and antineutrinos 
 about 30% of the final samples are antineutrinos

 Spans many decades in energy  ~100 MeV – 100TeV+ 

 Excellent tool for broad studies of neutrino oscillations
 Access to sub-leading effects with high statistics 

~E-2.7



Atmospheric Neutrinos As Signal 

 “Atmospheric” and Neutrino 
Oscillations 

 ∆m2
 Sin2θ23  , octant 
 Sin2θ13
 δcp 
 Mass Hierarchy 
 Exotic Scenarios 
 τ Appearance

 Earth Radiography 
 
 Resolution of Parameter 

Degeneracy (+ beam)
 Measurement of prompt  flux

ν Telescope
Iron  Calorimeter 
Large lAr or H20 Cherenkov

P( νµ → νe )

~10,000 km

~100 km

 Sensitivity to three-flavor oscillations via Earth-
matter effects 

 Resonance exists for either ν or ν bar  
  → hierarchy
 Strength coupled to θ13 



Atmospheric Neutrinos As Background 
 Proton Decay
 Cosmogenic ν 
 Point Sources 

 AGN
  GRB 

 Solar Flares
 Indirect Dark Matter 

  Exotics 
 SUSY
 CHAMPS 

ν Telescope
Iron  Calorimeter 
Large lAr or H20 Cherenkov

 Understanding and characterization 
of these backgrounds is key for 
future measurements 

χ 

χ 

ν 



  

Neutrino Oscillations Neutrino Oscillations 

» Definite flavor eigenstates are mixture of eigenstates of hamiltonian  

∣ 〉=∑i
U i

∗ ∣ i 〉

Flavor Eigenstate 
Mass State 

U= cos sin

− sin cos

P  =sin2 2sin2  1.27 m2 L
E  [ eV 2 km

GeV ]  m2
≡m2

2
− m1

2

» For two neutrinos in vacuum: 

» Need at least one non-zero mass eigenvalue

• m2 = m
i

2 – m
j

2 

» Non-zero mixing angle 

Baseline 



  

Two-Flavor Atmospheric Oscillations 

Upward-going events have opportunity to oscillate away
 








 is the dominant oscillation mode at SK 

P  =sin2 2sin2 1.27 m2 L
E  [ eV 2 km

GeV ]  m2
≡m2

2
−m1

2
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 22.5 kton FV Volume 
 Ring Imaging Water Cherenkov detector 
 11,1146 20” Phototubes  
 Data taken over four periods since 1996  

 SK discovered atmospheric neutrino oscillations 
exploiting the disappearance of upward-going 
muon events 

 Event samples are classified by 
  Number of rings  (  Single- or Multiple- )
  PID of out-going lepton ( e- or  µ-like )
  Event energy is fully or partially contained
  Upward-going muons 

 
 Today: 3903 days of atmospheric data 

 ~34,000 Events

 Currently statistics limited

 No net magnetic or electric fields
 Sitting at 2.5 degrees off-axis of the T2K beam 

Super-Kamiokande : Introduction
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Electron and Muon PID at Super-K 

e-like   ↔   µ-like Particle ID is based on both the cherenkov 
opening angle and the observed ring pattern 

 Probability that a muon is mis-reconstructed as 
an electron is less than 1% 

 Expect very low ν
µ
 contamination in the single-

ring e-like samples and vice versa



Neutrino Interactions

Rev. Mod. Phys. 84, 1307 (2012)



Event Topologies 

 Fully Contained events 
● Average energy ~ 1 GeV , leave no light in the outer detector
● Divided into several samples based on number of visible rings and their PID

 Partially Contained events 
● Initial vertex is within the SK fiducial volume but with a particle exiting into OD 
● Average Energy ~ 10 GeV 

 Upward-going muons 
● Neutrino interaction in the surrounding rock with an entering muon 
● Average Energy ~100 GeV



  

Zenith angle & lepton momentum distributions : Zenith angle & lepton momentum distributions : SK-I+II+III+IVSK-I+II+III+IV

 -like samples show large 
deficits in the upward-
going bins that are well 
described by oscillations

µ-like e-like

momentum

νµ–ντ oscillation (best fit)

Preliminary 



Neutrino Oscillations

~1 – 1/2sin22



SK-I  MC

ν
τ
 Events at Super-K

» Complicated event topology 
complicate identification of the 
leading lepton

•  Use a Neural Network procedure
•  80% efficient for signal 

» Many light producing 
particles

» Most events are deep 
inelastic scattering 
interactions

GOAL : Observe ντ  events in the atmospheric data  
How inconsistent is the “no appearance” hypothesis? 

  

» Negligible primary flux 
•  Observed tau events would be 

oscillation induced   

R.Wendell (ICRR) 1510/5/2012



Result Background Signal
SK-I 0.95 1.27
SK-II 0.96 1.47
SK-III 0.94 2.16
SK-I+II+III 0.94 ± 0.02 1.42 ± 0.35

DIS γ 1.10 ± 0.05

SK-I+II+III

Fitted Excess

Atm ν BKG MC

If no ντ  appearance ,  β = 0 

Tau signal clearly appears in upward-
going region 

Tau normalization fits to 1.42 × 
expectation 

Fit Results, 2806 days

R.Wendell (ICRR) 1610/5/2012

This corresponds to  180.1 ± 44.3 (stat) +17.8-
15.2 (sys) events a  3.8 σ excess
  (Expected 2.7 σ significance )



Neutrino and Anti-neutrino events at Super-K

νµ
νµ

16
O

νµ
µ

e+
νµ

π

νe In principal SK cannot distinguish between 
neutrino and anti-neutrino interactions on an 
event-by-event basis

 However, differences in the fluxes and cross 
sections (energy depenent) and the effects of 
pion absorption in water change the relative 
composition  the event samples    

 It is possible to study neutrino and 
antineutrino oscillation separately! 



ad hoc CPT Violation Test Results
Phys. Rev. Lett. 107, 241801 (2011)

 Essentially the underlying SK MC can be oscillated 
separately between neutrinos and antinteurinos 
when fitting the data 

● (Anti-nu)MCosc + (nu) MCosc  =? Data 

 No evidence seen for a difference in the oscillation of 
neutrinos and oscillations seen 

● No adhoc CPT violation indicated in SK data 

http://prl.aps.org/abstract/PRL/v107/i24/e241801
http://prl.aps.org/abstract/PRL/v107/i24/e241801
http://prl.aps.org/abstract/PRL/v107/i24/e241801
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Status of Neutrino Oscillations 

 Mixing between all three neutrino flavors has 
been observed
 θ

12
 = 33.6 ±  1.0°   

 θ
13

 = 9.1 ±  0.6°
 θ

23
 = 45 ±  6°  (octant?)

 Two Mass Differences
 |∆m2

12
 | ~ 7.6e-5 eV2 

 |∆m2
32

 | ~ 2.4e-3 eV2  (hierarchy?)

 CP-phase ,δcp remains unkown
 Absolute value of mass states is unknown

SolarAtmospheric

Normal 
Hierarchy

Inverted
Hierarchy
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Pure oscillation probabilities 

  In the presences of the now large θ
13

 resonant enhancement of the 

P(ν
µ
→ν

e
 ) oscillation probability occurs via matter interactions

Resonance occurs only for (anti-)neutrinos under the Normal (Inverted) 
Hierarchy. Effects on total event rate are roughly halved going to the IH

P(νµ→νe)  

~100 km

“Multi-GeV”“Sub-GeV”



Hierarchy Fit Result 
Normal 556.7 / 477 dof
Inverted 555.5 / 477 dof

χ2min (NH) - χ2min  (IH)  = 1.5 

Putting it all together – ThreeFlavor Oscillations

 Weak hints for non-maximal mixing
 Weak preference for the inverted 

hierarchy
 Slight indication of 

cp
 ~ 3 /2 

 Statistics limited! 



Atmospheric Neutrinos as Background:  Indirect WIMP Searches 

 Indirect detection allows a 
sensitive probe of a wide range of  
dark matter masses 

 *Assumptions about the source 
distribution and neutrino 
production mode are required 
(annihilation, decay, what 
channels) 





Assuming 
φ(νe)=φ(νµ)=φ(ντ) 
for WIMP signal 

FC

PC

UPMU

DM signal illustration

cosθGC

DM signal 
shape
enhanced for illustration

DATA
SK1,2,3

OSC ATM MC

NON-OSC
ATM MC

23

Mχ =  1.3 GeV

 Assume annihilation 
into nu-nubar

 Bin in angle to the 
galactic center 



Repeat this process for many masses and annihilation scenarios 

 No indication of an allowed WIMP excess of neutrinos between for WIMP 
masses between 500 MeV and 800 GeV

 This can be converted into a limit on the DM self annihilation cross-section 
(averaged over an assumed velocity distribution)

Preliminary



natural scale – expectation for DM as thermal relic 

νν 

νν 
Super-K

IceCube

νν 

W+W-

bb

bb

Super-K 
(NFW)

W+W
-

NFW – Navarro, Frenk, White

Limits for the Search for a Neutrino excess from the GC

Preliminary



WIMP-Induced Neutrino Events from the Sun 

 The same kind of search can be done assuming DM 
annihilation in the sun

● Fit atmospheric neutrino data  in bins of the direction to 
the sun 

 Focus on lower mass WIMPS
 No evidence for an excess of neutrino events coming from 

the sun 

10 GeV Annihilation signal int b-bbar from the sun

Preliminary



WIMP Nucleon Cross-section results 

Latest SK Results Latest SK Results

 Assumes standard dark matter halo profile, local density of 0.3 GeV/cm3
 Maxewellian velocity distribution v ~ 270 km/s 
 Assumption of equilibrium between dark matter capture and annihilation 

within the sun needed to relate excess neutrinos to WIMP-Nucleon 

Preliminary Preliminary



Summary 

 Super-Kamiokande has access to a wide variety of physics using its high-energy 
samples

 Currently all oscillation measurements are statistically limited 
● Though this means the future is potentially bright it will take time to get there
● No indication for a deviation from maximal atmospheric mixing nor for a 

preferred mass hierarchy so far

 Searches for a both a diffuse excess of neutrinos from the galactic center and a 
 more direct source from dark matter annihilation in the sun have yielded only 
limits 

● Efforts continue to push thresholds as low as possible to test the lightest 
WIMP mass scenarios



Back Pocket





Assuming 
φ(νe)=φ(νµ)=φ(ντ) 
for WIMP signal 

FC

PC

UPMU

DM signal illustration

cosθGC

DM signal 
shape
enhanced for illustration

DATA
SK1,2,3

OSC ATM MC

NON-OSC
ATM MC

31

Mχ =  100 GeV

 Assume annihilation 
into b-bbar

 Bin in angle to the 
galactic center 
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Super-Kamiokande : Generations 

 Hyper-K design is 20% photocoverage with SK-IV style electronics 



  

EXAMPLE: illustration of 5.6 
GeV WIMP annihila1tion signal 

in SK 

signal is before FIT

Monoenergetic Eν = Mχ

Isotropic

assume 
100% 

BR

» Search in atmospheric neutrino 
data from SK-I, -II & –III 
livetime: FC/PC 2806 days, UPMU 3109 
days

» FIT: for each tested WIMP 
mass, find the best configuration 
of ATM MC + DM signal that 
would match DATA the best

» Simulate signal in NUMU, NUE 
and NUTAU

» Distinctive signatures:

» using all SK samples: 
e-like + mu-like FC+PC+UPMU 
(wide energy range)

Momentum 

[GeV/c]
cosθ

Mχ = 5.6 GeV

Mχ = 5.6 GeV

Search for Diffuse Dark Matter AnnihilationSearch for Diffuse Dark Matter Annihilation

DM signal shape
enhanced for illustration

DATA
SK1,2,3

ATM MC with oscillations
SK  two-flavor best fit





  

» Conservative upper limit on WIMP 
total self-annihilation cross section 
<σV> 

» No allowed excess of  DM-induced 
ν’s for Mχ in range 3GeV – 3 TeV

» FIT based on Evis & cosθ distr., 
systematics included (120 sys. terms fitted)

Limit on <σv>

J∆Ω  integrated intensity over all sky 

related to DM halo density profile; includes 
information about DM density cusp in GC 

Fit Results Fit Results 

 excluded 
above

» Focus on signal arising from Milky 
Way halo (diffuse flux)

(*) H.Yuksel et al., Phys. Rev. D76, 123506 (2007),
arxiv: 0707.0196 [astro-ph] 



  

Solar 

 

Atmospheric 

U = 

How many   are expected at Super-K ?

 If 
13

 > 0, Multi-GeV resonant enhancement of 
e
 is          

           expected for upward-going neutrinos
Look like  events, but SK data are consistent with 


13

 = 0 so this effect is considered as a systematic  
 Solar oscillations exist  (

12
 > 0) so 

e 
 is expected at 

low energies ( < 500 MeV), well below  production 
threshold For 4.1 years / 22.5 kton 

sin22 = 1.0, m2 = 2.4 10-3 eV2 ,  expect ~78 



  

 

Atmospheric 

 Oscillations: 

∣ 〉=∑i
U i

∗ ∣ i 〉  mass eigenstates   flavor eigenstates 

U = 

To first order  experiments are sensitive to 
oscillations between two active 's: 

P  =sin2 2sin2  1.27 m2 L
E  [ eV 2 km

GeV ]  m2
≡m2

2
−m1

2

Solar

Additionally two mass splittings: m2

12 
, m2

13
 , 

cp
 



  

SK1+2+3 99% C.L.

SK1+2+3 90% C.L.

SK1+2+3 68% C.L.

preliminary

Best Fit: (physical):
       ∆m2 = 2.1 x 10-3 eV2

           sin2 2 = 1.0 
      2  = 468 / 418d.o.f 

MC osc. at best fit
Unosc. MC 

MC osc. at best fit
Unosc. MC 

cosine zenith

 High statistics
 > 28,000  events

Two-Flavor Analysis                                                       



Systematic Errors 

Systematic errors on the 
expected number of 



   78.4   27 (syst.)

Systematic errors on the 
observed number of 



   134 


 (syst.)



  

SK-IV Detector PerformanceSK-IV Detector Performance

»  Good Particle ID permance 
• 1% MIS PID Probability 

»  Absolute energy scale uncertainty has been narrowed to less than 
about 2%
• ~ 1% above 1 GeV 



  

Lepton momentum

< 1330 MeV 

> 1330 MeV 

»  Upward going -like events are disappearing !
• Not being compensated by an increase in the e-like event rate

~10,000 km
30 km

“Longer” Baseline:

Single-Ring Atmospheric Single-Ring Atmospheric  Data Data
Preliminary



  

Fitting Technique 
» Use an un-binned two-dimensional likelihood fit to extract the most from the data

» Previous analysis ( PRD 2006 ) fit only in one dimension
• Events with NN output > 0.5   in this plot 

»  Tau and Background events appear in dramatically different regions of the plot
• The signal appears exclusively in the upward-going direction

BKG 
-li

ke
B

K
G

-l
ik

e 
13

 BKG 

would be 
here 



  

Deep Inelastic Scattering  

» Neural network is very good at 
selecting  DIS events 
• Fit is sensitive to uncertainties in 
the scattering cross section

» To balance the fit and enable it to 
find the correct number of tau 
events we also include the 
DIS/non-DIS ratio as an additional 
fitting parameter 



Something Exotic Going On?

  We expect the disappearance probabilities of neutrinos and 
antineutrinos to be the same by CPT 

CPT  :   P( νµ → νµ  ) = P(ν̅µ  → ν̅µ ) 

  Can we test for differences in the 
disappearance probabilities with Super-K ? 
 YES
  Neutrinos and Antineutrinos are 

present in the flux

 However
 No net magnetic or electric fields at SK
 Cherenkov production is the same for l±
 No event-by-event sign discrimination



Neutrino and Anti-neutrino Cross Sections 

 Cross sections differ as a function of energy
 Varying by a factor of x2-3 

 Expect more neutrinos than antineutrinos 
 Relative compositions will vary as a function of energy
 Different sensitivities to L/E 

500 MeV 



νµ
νµ

 Generally there are fewer 
antineutrinos expected in 
the data 

 No sample is dominated 
by antineutrinos 

 Expect a weaker 
oscillation constraint

 This plot includes equal 
oscillation parameters 



?

 Without event-by-event discrimination we ask 
whether or not the observed zenith angle 
distribution of the data is consistent with the 
sum of separately oscillating neutrino and 
antineutrino spectra 

 This is an ad hoc test …

In the End, the technique is simple 

ν

ν ̅



Atmospheric Neutrino Fluxes 

 “Prompt” Flux  from the production and 
decay of charmed mesons:

 Currently unmeasured 

 “Conventional” flux  used to discover 
neutrino oscillations 

 Wide variation in L/E
 Absolute flux known to ~20% 
 Shape known to ~5-10% 



Super-K Data: Electron-like and Muon-like Events
No Oscillations

Oscillations



A Word about systematic errors 
 The standard Super-K disappearance analysis is currently statistics 

limited 
 Will continue for another 30 or 40 years 
 This limitation naturally extends to the ν, ν̅ separated analysis 

 Nonetheless 122 Sources of systematic error are considered
Error  Range  Error % Comment 

νµ /  ν̅µ   Flux Ratio 0.1 < E < 1 GeV  2 Taken as the 
difference 
between flux 
models 

1 <E < 10 GeV 6

10 GeV < E 6

νµ /  ν̅µ   

Cross Section  Ratio

CCQE ~10 Difference of cross 
section models as 
a function of 
energy Single Meson Production ~10

Flux Normalization  E < 1 GeV  25 Energy dependent 
in these ranges 1 GeV < E 7

Decay Electron Tagging - 1.5 Single efficiciency













  

(n
u

ll 
o

sc
.)

Oscillation

Decoherence

Decay

 Decoherence ruled out at 4.4 

 Decay ruled out at 5.4 

L/E Analysis: SK-I + II + III

 Construct a sample with good             
  resolution (> 70%) in L/E 
 Use FC and PC Samples
 High purity in CC 


 interactions

 > 93% for all samples and SK 
geometries 

Best Fit: Oscillations (physical):
       ∆m2 = 2.2 x 10-3 eV2

           sin2 2 = 1.0 
      2  = 119 / 126 d.o.f 

preliminary

preliminary
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