

The bi-monthly meeting of the Multi-Messenger Astronomy Consortium 15/Apr/2014

Contents

Photo-detector development for a large volume detector

Requirement of photo-detector

 Proof test of hybrid photo-detector and high quantum efficiency

Development of new 50cm Φ photo-detectors

Physics interest

Physics target in water Cherenkov detector

neutrino with rare detection only by weak interaction

Measure neutrino property such as neutrino oscillation

▶ Massive detection volume and long operation period are required to detect these rare events.

O Charged particle is observed as Cherenkov ring in water.

Cherenkov radiation cone

← Ring image on detector wall

$$\cos\theta = \frac{1}{n\beta}$$

n~1.33, θ~42°

Ring light pattern provides various information such as momentum, particle type and counting, timing, etc.

- ▶ Many photo-detectors with large aperture are required.
 - Performance of photo-detectors is critical to physics sensitivity.

Photo-detector in Super-Kamiokande

Many of photo-detectors detect a water Cherenkov light photons.

Imaging by 11129 50-cm ◆ photomultiplier tube (PMT)

established but old.

R3600 by Hamamatsu Photonics K.K.

- Time information is used to reconstruct vertex, and to discriminate signal from background or particle decays. $\rightarrow a$ few nsec resolution
- Charge resolution is important for low energy physics, such as solar neutrino and super nova, in several MeV and sensitive to energy resolution and particle identification. \rightarrow Good photon counting
- Event trigger by PMT hit coincidence. \rightarrow low (a few kHz) single rate New type with high performance is possible now for future experiments.

Photo-detector for Hyper-Kamiokande

Access Tunnel

Super-Kamiokande

(since 1995) (SK)

0.0225 (0.05) Mton Fiducial (Total)

x 25(20)

(HK)

Based on established technologies (Large water tank, Electronics, Calibration, etc.)

+ Improvement with a new technology such as photosensor (R&D within 3-5 years)

	Super-K	Hyper-K
Inner detector (for v detection)	11,129 (50cmΦ)	99,000 (50cmΦ)
Outer detector (for cosmic-ray veto)	1,885 (20cmΦ)	25,000 (20cmΦ)
Photo-coverage	40%	20%
QE (quantum efficiency)	22%	~30%

Hyper-Kamiokande Large water Cherenkov detector Planned in Kamioka, Japan

Width 48m

0.56 (0.99) Mton

Details in next talk

Cavity (Limited)

Compart ment Inner detector

PMT

= Super-K × 9, Outer detector 1/4 of total cost

Develop new photo-sensor with low cost and high performance

Photo-detector candidates

+ High Quantum Efficiency (QE) option for all candidates

Current status

- 2 new photo-detectors were developed.
- - O 20cm Φ HPD
 - 50cm Φ high-QE PMT
 Proof test in a water Cherenkov detector has started
- 50cm Φ high-QE HPD and box&line PMT are under testing.
 - Evaluated performance of 1st prototype
- → Also tested in water soon

50cm 4 High-QE PMT

- High Q.E. study starts with PMT, later for HPD.
 - O Study (especially for the trigger and stability) is required, because photocathode (related to dark rate) is changed.

50cmΦ high-QE PMT

- Completely same design and material as SK PMT, except for photocathode.
- \bigcirc 22% \rightarrow 30% QE typ.
- O Within 10% uniformity
- 8 high-QE PMTs
 are provided and
 5 of them are tested
 in the 1st proof test.

Hybrid PhotoDetector (HPD)

PMT	Metal dynode
1-2kV	× dynode gain Bombardment gain x ~ 15

HPDPMTHV ^{8}kV 1-2kVGain $^{1}0^{4} - 10^{5}$ $^{1}0^{7}$ C.E. $^{9}5\%$ $^{8}0\%$

High voltage around 8kV is required

to collect electrons in the small region of AD (5-20mm) to increase gain at electron-bombardment

- High performance and low cost
- Factors to be considered for viability in Hyper-Kamiokande:
 - Dark noise from AD + Amp., HV around 8kV, low gain, thermal dependence of AD gain, No prior experience using

20cm HPD prototype

Specification

Spectral response		300 - 650 (420 max.) nm	
Photocathode		Bialkali	
Window	v material	Borosilicate glass	
Gain		4 - 9 x10 ⁴	
Time	Rise	1.7 ns	
	Fall	2.7 ns	
	T.T.S.	0.62 ns (σ)	
Dynamic range 100 pC (1.5		100 pC (1.5x10 ⁴ p.e.)	

avalanche diode (AD)

Preamp board

High voltage module (2ch 10kV/500V Max)

- By Hamamatsu Photonics
- HV module and preamplifier are packed and waterproofed.
 - Operated in water without high voltage line.

Signal from 20cm 4 HPD

5V←10V

Gain and high voltage

- Gain of all samples was measured.
- Adjust HPD gain by AD bias voltage.

HPD gain = Bombardment gain↑
× ↓ Avalanche gain

photo-electron separation

High-QE PMT

Peak/Valley ratio

Measured all photo-detectors for the proof test before installation

Better separation for HPD

Proof-test in 200-ton water tank

Test new photodetectors in the 200-ton water tank.

Evaluating Gadolinium's Action on Detector Systems 200-ton test tank to demonstrate the GADZOOKS! Idea. (Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande Super!)

240 photodetectors 1000m underground, Kamioka mine Pre-treatment system Main water circulation

2 types have been installed.

Other new photo-detectors are also tested as soon as it becomes ready. Compared with 227

Anti-neutrino tagging by neutron Transparency measurement (~8 MeV) 8 20cm-Φ HPDs 5 50cm-Φ high-QE PMTs PMT (High QE) HPD (8-inch)

PMTs used in Super-K

system

Installation of photodetectors

All photodetectors were installed in Aug. 2013.

Inside of 200-ton water tank viewed from top

227 Super-K PMT (50cmΦ) + 5 High-QE PMT

_+ 8 HPD (20cmФ)

Started a long-term proof test for a few years.

Operation

- Trigger is issued by sum of hits with all photo detectors.
 - 1 hit = 1 HPD (PMT) with 1 p.e. or more signal
- In same DAQ system, electronics of HPD/HQE PMT is separated.
 - 1 p.e. level differs between PMT and HPD.
 - Photons/p.e. differs between normal and high QE.

DAQ of charge + time

ATM (Analog Timing Module) used in 12ch x (2TAC+2QAC)→ADC old SK

Calibrated HPD/HQE PMT.

I board for HPD (8/12ch)

1 for HQE PMT (5/12ch)

Trigger threshold is set

by each board (0-12mV)

Set threshold separately

(0.25p.e. in PMT case)

ATM replaced with QBEE(current SK board) later

70m signal cable

Control Power Supply

10ch x 6 LV cables

2 Power supply lines (10V)

For HV unit and Pre-amp.
 (<500mA) + GND

4 HV control lines (<1mA, 5V)

- HV control (0 4V out)
- AD bias control (0 4V out)
- Latch up monitor (+5V in)
- Enable switch (+5V out)

NOT for Hyper-K case

70m Low voltage (10V) + control cable (5V)

1 photo-electron peak

Check performance in tank

Measured with laser diode (λ = 405nm, 500Hz), 70m cable, 13 °C in water

Charge [pC]

charge integrated in 400ns window

- 1 p.e. peak is recognized in the 200-ton tank.
- Broad pedestal at HPD will be cut out.
 - Threshold is set to cut pedestal out.
- Better p.e. resolution of HPDs.
 - O PMT 40-50%, HPD~30%

Multi photoelectron peaks by HPD

- Multi photoelectron peaks were clearly seen.
- About 30% σ at 1 p.e. peak

Output linearity

Peak resolution

Dark count rate

- Event is triggered by hit coincidence. Threshold is set to take 1 p.e.
 - Low dark count rate is essential to take low energy event.

Dark rate is stabilized gradually in years.

HPD/HighQE PMT is newly manufactured.

New 50cm-Ф photodetectors

 Hamamatsu Photonics is developing 2 new 50cmΦ photodetectors of HPD and PMT with box and line dynode type.

Model R12860 (Under development) R12850 (Under development) R3600 (Used for 2-30 yrs) C.F. 80% 95% 93% Calculated value 2.7 ns T.T.S. (FWHM) 5.5 ns 0.75ns (w/o Preamp.) in simulation Bias voltage 2 kV bias 8 kV bias, 20mm φ AD 2 kV bias

- Prototype of the 2 photodetectors was prepared with high QE.
- Basic performance was measured.

Amplification in dynodes

- Good photon collection by box shape 1st dynode
- Fast time and constant gain by linear-focused dynode

- New design of box and line dynode and High QE on it demands well optimizing and manufacturing process.
 - ▶ <u>Performance</u>, noise, response uniformity and usability must be confirmed.

Signal Output

- Recovery shape is determined by electronics
 - Bleeder circuit or preamplifier is not final.
- Original waveform of HPD is fast (1.9ns rise time, etc.).
 - Shaped by preamplifier
- Measured HPD prototype with 5mmФ AD smaller than 20mmФ in final design

10% - 90%	HPD	B&L PMT	SK PMT
Rise time (ns)	7.4	6.2	10.6
Fall time (ns)	11.5	6.3	13.1
Width (FWHM, ns)	25.5	16.7	31.4

Both new photodetectors show faster response.

Gain by applied HV

- Started R&D and measurement with a few photo-detector prototypes.
 - O Electronics, all design is still under development.

- Confirmed all photo-detector prototypes working with proper gain level.
- → Evaluate detection performance

1 p.e. charge resolution

Better p.e. resolution is obtained in new photo-detectors.

- HPD performance is limited by current amplifier design.
 - Amplifier, readout and avalanche diode R&D are going on.

1 p.e. time resolution

Box & Line PMT and SK PMT

	HPD		B&L PMT	SK PMT
	(50cm Φ)	(20cm Φ)	(50cm Φ)	(50cm Φ)
Resolution in σ [ns]	1.4 ns	1.1 ns	1.1 ns	2.1 ns
FWHM [ns]	3.4 ns	3.3 ns	4.1 ns	7.3 ns
(Calculation)	(0.75 ns)	(0.62 ns)	(2.7 ns)	(5.5 ns)

Better time resolution is obtained in new photo-detectors.

Plan of R&D

Hyper-K time scale

Goal of R&D

Our R&D purpose and goal match other neutrino experiments.

Other v experiments plan to use many $50cm \Phi$ photodetectors.

Summary

- Development of new photo-detectors is going on.
 - O HPD and new PMT with high quantum efficiency.
- Proof test started with 20cm-Φ HPD and 50cm-Φ high-QE PMT in the 200-ton water tank.
- Prototypes of 50cm-Ф high-QE HPD and PMT with box and line dynode show better resolution in both charge and time than Super-K PMT.
 - Studying on noise, dark hit, after pulse and response uniformity
 - Development of electronics is in progress.
- All R&D and test will finish in 2016.
 - Select the best photo-detector for Hyper-K