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Programme: Day 3
Wednesday 12 November 2014

Morning 1 [Chair: Takeshi Chiba]

9:30 Raffaele Flaminio (NAOJ, KAGRA) [Invited]
            “Status and Prospect of Gravitational Waves detectors” [JGRG24(2014)111201]

10:15 Kazunari Eda (RESCEU) 
            “Multiple output configuration for a torsion-bar gravitational wave antenna”
            [JGRG24(2014)111202]

10:30 Hirotaka Yoshino (KEK) 
            “How to probe string axiverse with gravitational wave observations”
            [JGRG24(2014)111203]
            
10:45-11:00  coffee break

Morning 2 [Chair: Yasusada Nambu]

11:00 Teruaki Suyama (RESCEU, Tokyo) 
            “Black hole perturbation in modified gravity” [JGRG24(2014)111204]

11:15 Ryotaku Suzuki (Osaka City) 
            “Derivation of higher dimensional black holes in the large D limit” 
            [JGRG24(2014)111205]

11:30 Takahisa Igata (Kansai Gakuin) 
            “Integrability of Particle System around a Ring Source as the Newtonian Limit of a        
              Black Ring” [JGRG24(2014)111206]

11:45 Kazufumi Takahashi (RESCEU) 
            “Cosmological evolution of the chameleon field in the presence of a compact object”
            [JGRG24(2014)111207]

12:00 Ayumu Terukina (Hiroshima) 
            “Observational constraint on a generalized Galileon gravity model from the gas 
              and shear profiles of a cluster of galaxies” [JGRG24(2014)111208]

12:15 Atsuhisa Ota (TITech) 
            “CMB μ distortion from primordial gravitational waves” [JGRG24(2014)111209]

12:30 - 14:00  lunch & poster view
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Afternoon 1 [Chair: Kunihito Ioka]

14:00 Shigeru Yoshida (Chiba, IceCube) [Invited]
            “Probing the origin of UHECRs with neutrinos” [JGRG24(2014)111210]

14:45 Kenta Kiuchi (YITP, Kyoto) 
            “The simulation of magnetized binary neutron star mergers on K”
            [JGRG24(2014)111211]

15:00  Kentaro Takami (Goethe)
            “Constraining the equation of state of neutron stars from binary mergers”
            [JGRG24(2014)111212]

15:15  Motoyuki Saijo (Waseda) 
            “Fragmentation Effects in Rotating Relativistic Supermassive Stars”
             [JGRG24(2014)111213]

15:30-16:00  coffee break & poster view

Afternoon 2 [Chair: Yasufumi Kojima]

16:00  Marcus Werner (Kavli IPMU)
            “New views of gravitational magnification” [JGRG24(2014)111214]

16:15 Takao Kitamura (Hirosaki) 
            “Gravitational lensing in Tangherlini space-time” [JGRG24(2014)111215]

16:30 Kei Yamada (Hirosaki) 
            “Linear Stability of the Post-Newtonian Tri-angular Solution to the General 
              Relativistic Three-Body Problem” [JGRG24(2014)111216]

16:45 Nami Uchikata (CENTRA) 
            “Slowly rotating gravastars with a thin shell” [JGRG24(2014)111217]

17:00 Naoki Tsukamoto (Fudan) 
            “Particle Collision in Wormhole Space-times” [JGRG24(2014)111218]

17:15 Takafumi Kokubu (Rikkyo) 
            “Negative tension branes as stable thin shell wormholes” [JGRG24(2014)111219]

17:30 - 18:00  poster view

18:30-  banquet 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“Status and Prospect of Gravitational Waves detectors”  

Raffaele Flaminio [Invited]

[JGRG24(2014)111201] 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Status and perspectives of 
gravitational wave detectors

Raffaele Flaminio
National Astronomical Observatory of Japan

I. Gravitational waves (GW): physics and sources

II. GW detectors: principles and issues

III. GW detectors: status and perspectives

IV. Status of KAGRA

V. Conclusions

I. Gravitational waves:
physics and sources

2JGRG24, November 12th, 2014
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Gravitational waves

z Einstein equations: space-time is a stretchable medium
� Gravitational waves

z Weak fields approximation
� gµν = ηµν + hµν with hµν <<1

�⊡ℎ𝜇𝜇𝜇𝜇= −16 𝜋𝜋 𝐺𝐺
𝑐𝑐4 𝑇𝑇𝜇𝜇𝜇𝜇 −

1
2 𝜂𝜂𝜇𝜇𝜇𝜇𝑇𝑇𝜆𝜆𝜆𝜆

z Properties of gravitational waves
� Speed of light
� Two polarizations: spin 2 waves

z Effect of gravitational waves
� Change of distance among free-falling bodies
� 𝛿𝛿𝛿𝛿 = ℎ 𝛿𝛿 with L the distance between the bodies

JGRG24, November 12th, 2014 4

Generation of gravitational waves

z Solution of Einstein equations in the weak field approximation
� Quadrupole emission

� Energy emitted in GW: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
5

𝐺𝐺
𝑐𝑐5 𝐼𝐼𝑖𝑖𝑖𝑖 𝐼𝐼𝑖𝑖𝑖𝑖

z Back of the envelope calculation
� System of size R, mass M, changing over a time scale T

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ≈

1
5

𝐺𝐺
𝑐𝑐5

𝑀𝑀2𝑅𝑅4

𝑇𝑇6 ≈ 𝛿𝛿0
𝑅𝑅𝑆𝑆𝑆𝑆𝑆
𝑅𝑅

2 𝑣𝑣
𝑐𝑐

6

� with RSch = Schwartchild radius, v = R/T typical speed and L0 = 3.6 1052 J/s
� Large energy emission from compact and relativistic sources

z Astrophysical sources
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The gravitational wave spectrum

Bars

JGRG24, November 12th, 2014 6

Coalescing binaries

z Coalescences of compact binaries
� Composed of neutron stars or black holes
� Inspiral phase predicted by general 

relativity (a lot of tests to be done)
� Merger unknown
� Ring down predictable (a lot to learn)

z Strong scientific potential
� Standard candles

» Source distance can be found out of the 
waveform

� Test of general relativity
» Accurate measurements of inspiral waveform 

can test gravity in the strong field regime
� Nuclear physics

» Waveform before coalescence sensitive to the 
star equation of state
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Gravitational waves exist !

z Binary pulsar 1913+16 (Hulse and Taylor)
� Binary formed by two neutron stars (one being a radio pulsar)
� Orbital period (~ 8h) is decreasing due to energy 

loss via GW emission
� Excellent agreement with general relativity
� Physics Noble Prize in 1993
� Coalescence in 300 Myr

JGRG24, November 12th, 2014 8

Binary neutron stars

z Observed compact binaries:
� Only NS-NS observed so far

» About 10 binary neutron stars detected in the galaxy from pulsar detection

Credit: Lorimer 2008
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Coalescing binaries

z Expected rates of coalescing binaries

Credit: Abadie et al. 2010

JGRG24, November 12th, 2014 10

GW burst sources

z Type II Supernovae
� Star core collapse
� Rate: from 0.01 to 0.1 per year in a 

Milky-way like galaxy

� ℎ = 1.5 10−21 𝑑𝑑
10−7𝑀𝑀𝑂𝑂

1
2 1𝑚𝑚𝑚𝑚

𝑇𝑇

1
2 1 𝑘𝑘𝑘𝑘𝑘𝑘

𝑓𝑓
10 𝑘𝑘𝑘𝑘𝑐𝑐
𝑑𝑑

with T = duration of collapse and f frequency of GW
� Amount of energy E converted into GW uncertain

Simulations suggest (10-11 Mo – 10-7 Mo)

z Gamma ray-bursts
� Hypernovae
� Coalescence of neutron stars and black- holes

z Pulsar glitches and magnetar flares

z Relativistic instabilities of neutron stars
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Rotating neutron stars

z Neutron stars
� Very compact stars,  M~1.4 M0 with R~10km 
� Observed as sources of radio pulses (‘pulsars’)

» About 2000 pulsars detected in the galaxy
» Rotation frequency f: from 1 Hz to about 1 KHz

� About 109 neutron stars expected in the galaxy

z Gravitational wave emission if stars not axis-symmetric
� Deformation due to elastic stress or magnetic field
� Deformation due to accreting matter
� Free precession around rotation axis
�  ..

z Gravitational wave amplitude
� A
� ε can be anywhere in the range 10-12 to 10-3

� ε = 10-5 is a mountain of 10 cm on the neutron star!

JGRG24, November 12th, 2014 12

GW stochastic background

z Primordial gravitational waves
� Produced during the early life of the Universe

� Amplitude described by Ω𝐺𝐺𝐺𝐺(𝑓𝑓)=
𝑑𝑑𝜌𝜌𝐺𝐺𝐺𝐺

𝜌𝜌𝑆𝑆 𝑑𝑑(ln 𝑓𝑓 ) with ρc the universe critical density

� Amplitude very dependent on model
» Inflation, Pre Big bang model, Cosmic strings, Electroweak transitions,  

� Detection can give unique information on the early Universe and its evolution

z Confusion background for cosmological sources
� Superposition of many different type of sources
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Scientific motivations

z First direct detection of gravitational waves

z Study of the gravitational force
� GW can be generated by pure space-time (black-hole)
� GW can reveal the dynamic of strongly curved space-time

z New window to observe the universe
� GW are produced by coherent relativistic motion of large masses
� GW travel unperturbed trough opaque matter
� GW dominate the dynamics of interesting astrophysical events

III. Gravitational wave detectors
(ground-based)

14JGRG24, November 12th, 2014
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Long baseline laser interferometers

z Michelson interferometer is the ideal tool
� Measure light phase shift at the interferometer output

z Free falling masses
� All mirrors suspended to pendulums
� Free masses above the pendulum resonance

z Expected signals
� h=10-22, L=3 km
� dL = 3 10-19 m

z GW detection
� Measure tiny light phase shifts
� Measure tiny displacements

2
hLL +=∆2

hLL −=∆

Suspended 
mirror

Suspended 
mirror

Beam splitter

LASER

Light
Detection

L L

Fabry-Perot

Recycling 

mirror

P’

JGRG24, November 12th, 2014 16

Phase noise

z GW → Phase shift 𝑑𝑑𝜙𝜙 = 4𝜋𝜋
𝜆𝜆 ℎ𝛿𝛿

z Phase noise 𝑑𝑑𝜙𝜙 = 1
𝑁𝑁 with N the flux of photons injected into the 

interferometer

z Shot noise limit ℎ > 𝜆𝜆
4𝜋𝜋𝜋𝜋

2ℎ𝜇𝜇
𝑃𝑃 with 𝑃𝑃 the laser power and ℎ𝜈𝜈 the photon 

energy
� h ~ 10-23 requires L~100 km and P~1 kW

z Use of Fabry-Perot cavities
� Increase effective length L

z Use of light power recycling
� Increase power P arriving on the

beam splitter

P

L L
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Radiation pressure noise

z Can we increase the laser power further?
� Radiation pressure noise

z Radiation pressure 
noise
� Noise increases with 𝑃𝑃
� The Heisenberg 

uncertainty principle
� A macroscopic 

instrument limited by 
quantum noise

z Ways out?
� Brute force: Larger mirrors, 
� Non classical states of light: light squeezing

L L
phase noise

phase noise with
100x increased laserpower

P~

1
~

−
P

m~

JGRG24, November 12th, 2014 18

Squeezing

z Or inject phase squeezed vacuum from the output port 

z Squeezed vacuum
� Increase radiation 

pressure noise 
� Decrease phase noise
� Equivalent to more power
� Limit: 

» amount of squeezing
» i.e. optical losses

z Tested at GEO and LIGO

L L

input

field

output

field

Squeezed vacuum 
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Squeezing

z Inject frequency dependent squeezed vacuum from the 
output port
� Phase squeezing at 

high frequency
� Amplitude squeezing

at low frequency
� Decrease both phase noise

and radiation pressure noise

z How?
� Filtering cavity
� Limitation:

» Cavity optical losses
� Something that could be 

tested at TAMA

L L

input

field

output

field

Frequency dependent 

squeezed vacuum 

f < f0

f > f0

JGRG24, November 12th, 2014 20

Mirror thermal noise

z Mirrors position fluctuations due to temperature

z Fluctuation-dissipation theorem
� The larger the dissipation the larger the fluctuation
� E.g. Johnson noise in a resistor
� Also valid for mechanics
� The larger the mechanical internal 

friction the larger the position fluctuation

z Mirror thermal noise
� Due to mirror internal dissipation/friction

» Friction in mirror substrate
» Friction in mirror coating

� Solutions
» Increase beam size
» Find coatings and substrates with lower internal friction

– Crystalline coatings
» Decrease the temperature
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Suspension thermal noise

z Suspension thermal noise
� Due to internal dissipation/friction in the suspension wires
� Main causes

» Friction in the suspension wires material
» Friction in the contact between the wires and the mirror

� Main solutions
» Better wires
» Monolithic suspension (all in silica)
» Decrease the temperature

JGRG24, November 12th, 2014 22

Seismic noise

z We are in Japan  . do I need to explain seismic noise?
� Natural ground vibrations much larger than GW signals

» Even underground
� Main solutions

» Advanced seismic isolation systems (low frequency cut-off)

~10 m

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

10-21

Photon shot noise level

109
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Gravity gradient noise

z Local gravity variation due to masses motion around the mirror.
� Originated from seismic noise 

(or air masses motion)
� Main solutions:

» Go underground
» Measure seismic noise precisely 

and subtract from ITF signal

Figure: M.Lorenzini
23JGRG24, November 12th, 2014

Environmental noise

24JGRG24, November 12th, 2014

z Acoustic noise and air index of 
refraction fluctuations
� Placed all interferometer in high vacuum

z Diffused light noise
� Low scattering optics
� Baffles and beam dampers
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Example of interferometer sensitivity

z Advanced Virgo

25JGRG24, November 12th, 2014

IV. Ground-based gravitational wave 
detectors: status and perspectives

26JGRG24, November 12th, 2014
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Laser interferometer GW detectors

27

TAMA, Tokyo, 300 m

GEO, Hannover, 600 m

LIGO Hanford, 4 km:  
2 ITF on the same site!

LIGO Livingston, 4 km

Virgo, Cascina, 3 km

JGRG24, November 12th, 2014

A global network

28

LIGO
Livingston

LIGO
Hanford

TAMA GEO

VIRGO

JGRG24, November 12th, 2014



�368

The LIGO-Virgo network

z Virgo and LIGO run jointly between 2007 and 2010
z Both were at the design sensitivity
z Full data sharing and joint data analysis
z No detection
z Upper limits placed on many type of sources

29JGRG24, November 12th, 2014

The LIGO-Virgo network results

30JGRG24, November 12th, 2014
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Highlights of LIGO-Virgo results

z Cosmological background

z Pulsars emission
� Pulsar slow down limit beaten in several cases
� “Pulsar mountains” < 1 mm in some cases

z Coalescing binaries rates

31JGRG24, November 12th, 2014

Toward Advanced Detectors

z Goal: 
� increase sensitivity x10
� Increase number of sources x1000

z Advanced detectors
� US: Advanced LIGO (NSF)
� Europe: Advanced Virgo 

(CNRS/INFN/NIKHEF)
� Japan: KAGRA (MEXT)

32

LIGO/
Virgo

Advanced 
LIGO/Virgo

KAGRA

JGRG24, November 12th, 2014
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From LIGO/Virgo to AdvLIGO/Virgo

z Major upgrades
� Monolithic fused silica suspensions (better thermal noise)
� Larger and better mirrors (→ 40 kg, sub-nm quality)
� Higher laser power (→ 200 W)
� Use of signal recycling (for quantum noise)
� Advanced seismic isolations (for LIGO)

JGRG24, November 12th, 2014 33

Advanced LIGO

z Upgrade of LIGO
� Funded by NSF with contributions from Germany, UK and Australia
� Same infrastructure
� New interferometer

z Status
� Project near to completion (94%)
� Installation completed
� First “interferometer locking” at Livingston achieved!

» Sensitivity already better than Initial LIGO
� Commissioning on-going at Hanford
� Third interferometer components to be

shipped to India
» INDIGO

z First observation run in 2015

JGRG24, November 12th, 2014 34
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Advanced Virgo

z Upgrade of Virgo
� Collaboration including teams from Italy, France, 

the Netherlands, Poland and Hungary
� Same infrastructure (and seismic isolation)
� New interferometer

z Status
� Project 70% completed
� Installation ongoing
� Commissioning: end of 2015
� First science run in 2016

JGRG24, November 12th, 2014 35

Advanced LIGO/Virgo plans

JGRG24, November 12th, 2014 36
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The forthcoming advanced network

z Advanced Virgo

37

KAGRA, Japan
Kamioka, 3 km

Adv LIGO, USA, 
Hanford, 4 km

Adv LIGO, US,  
Livingston, 4 km

Adv Virgo, Italy, 
Cascina, 3 km

INDIGO
LIGO - India

GEO-HF, Germany, 
Hannover, 600 m

JGRG24, November 12th, 2014

The forthcoming advanced network

z Advanced Virgo

38

KAGRA, Japan
Kamioka, 3 km

Adv LIGO, USA, 
Hanford, 4 km

Adv LIGO, US,  
Livingston, 4 km

Adv Virgo, Italy, 
Cascina, 3 km

INDIGO
LIGO - India

GEO-HF, Germany, 
Hannover, 600 m

JGRG24, November 12th, 2014
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V. Status of KAGRA

39JGRG24, November 12th, 2014

The KAGRA project

z Financed by MEXT
z Currently under construction near Kamioka, Gifu

40JGRG24, November 12th, 2014

Underground Research Facility
Neutrino :               SK, Kamland
Dark matter :          XMASS
Gravitational Wave : CLIO, KAGRA
Geophysics :            Strain meter

1hr from 
Toyama by car

Map by Google
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The KAGRA project

z KAGRA project
� 3 km long laser interferometer
� Located underground (Kamioka mine)

» Less seismic and gravity noise
» Environmental noise reduction

� Two floors cavern to host longer
vibration isolation

� Use of cryogenic sapphire mirrors
» Thermal noise reduction

41JGRG24, November 12th, 2014

Status of KAGRA

z Tunnels and Facility
� Excavation completed in March 2014
� Facility completion in progress 

42JGRG24, November 12th, 2014



�375

Status of KAGRA

z Vacuum tube and cryostats
� All components delivered
� Installation started
� Completion by March 

43JGRG24, November 12th, 2014

Status of KAGRA

z Vacuum chambers
� Being delivered, installation started 

z Interferometer components
� In preparation, very first installation starting

44JGRG24, November 12th, 2014
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KAGRA overall plan

bKAGRA
iKAGRA

・iKAGRA (2010.10 – 2015.12)
3-km FPM interferometer

- Baseline 3km room temp.
- Operation of total system 

with simplified IFO and VIS.

2012 2013 2014 2015 2016 2017

OBS

2018

・bKAGRA (2016.1 – 2018.3)                     
Operation with full config.  
- Final IFO+VIS configuration
- Cryogenic operation.

Cryo-mirrors

Recycling 
mirrors

bKAGRA

z The cryogenic challenge
� A lot of power in the interferometer

» 400 kW of laser power stored in the arm cavities
� About 1 W to be extracted from the mirror to keep it at 20 K

» Absorption in the sapphire substrate is critical
» Need to use thick sapphire fibers for the mirror suspension
» Compromise on suspension compliance and 

pendulum thermal noise
� Detector duty cycle: cooling time
� R&D ongoing, more needed

46JGRG24, November 12th, 2014
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KAGRA design sensitivity

47JGRG24, November 12th, 2014

Summary and outlook

z Advanced LIGO is going to start operation next year
z Advanced Virgo will follow shortly afterwards
z KAGRA will join in 2018 increasing considerably the overall 

network capabilities

z With this global network NS-NS coalescences within 300 Mpc
and BH-BH coalescences within 1 Gpc will be detectable

z Several tens of events/year expected within these distances 

48JGRG24, November 12th, 2014
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EM follow up

z EM observations triggered by GW candidate events
� Infrastructure tested with LIGO-Virgo
� 11 EM partners (optical, x-ray and 

radio observatories) in 2009-2010
� 14 GW “alerts”, 9 followed-up by

at least 1 partner
� New collaborations established for 

Adv LIGO - Adv Virgo
� KAGRA will be part of it

49JGRG24, November 12th, 2014

JGRG24, November 12th, 2014 50

Beyond advanced detectors

z Proposal for a new European infrastructure devoted to GW 
astronomy: Einstein Telescope
� Design study financed by the EU. Released in 2011
� Goal: x10 better sensitivity compared to advanced detectors

z Keywords:
� Underground
� 10 km triangle
� Cryogenic
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eLISA

z evolving Laser Interferometer Space Antenna
� Michelson interferometer

» L = 1 million km
� 3 S/C in heliocentric orbit 
� 10-30 degrees behind the earth
� Plane inclined by 60 degrees

z Sensitive to low frequencies
� 10-3 – 10-1 Hz

z Complementary to 
ground-based detectors

z Selected as L3 mission by ESA
� Launch planned in 2034

JGRG24, November 12th, 2014 52

eLISA

z Massive black hole binary 
inspiral and merger
� Dynamical behavior of space-time
� Growth of massive black holes 
� Absolute distances

z Ultra compact binaries
� Extreme degenerate stars (mainly WD, 

NS, BH,  )

z Extreme mass ratio inspirals
� Test Kerr black hole solution of GR
� Galaxy nuclei

z Cosmological backgrounds
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“Multiple output configuration for a torsion-bar 

gravitational wave antenna”  

Kazunari Eda

[JGRG24(2014)111202] 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 Multiple output configuration for a 

torsion-bar gravitational-wave antenna 

Kazunari  Eda 
The University of Tokyo, RESCEU 

(RESearch Center for the Early Universe) 

Collaborators:  
A.Shoda, Y.Itoh & M.Ando 

PhysRevD.90.064039  
e-Print: arXiv:1406.7059 

1 

2014/11/12 
JGRG24@IPMU 

Motivation 
� One of the most important information in GW 

observations is the location of the source on the sky.  
� The accuracy of angular positions will be the crucial step 

in identifying sources and opening them for study by EM 
observations. 

� A single GW detector cannot locate the source position 
for short-duration GW signals. 

2 

9 We propose a new antenna configuration for a TOrsion-Bar 
GW Antenna (TOBA) to improve the angular resolution.   

9 We investigate its angular resolution. 

Schutz, arXiv:gr-qc/0111095 
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What is a TOBA ? 
� TOrsion-bar Antenna (TOBA) 
9GW antenna for low-frequency on the ground 
9 formed by two bar-shaped orthogonal test masses  
9 sensitive to low-frequency ( f=0.1-1 Hz ) even on ground 

thanks to its resonant frequency fres < 1mHz.  

3 

(Ando et al. Phys. Rev. Lett. 105, 161101) 

Main 
Targets 

• Compact binary coalescence 
• Stochastic GW background 

GW 

New antenna configuration 
�Multiple-output configuration 
9Previously, only the rotation on the xy plane has been 

considered.  

 
9 We incorporate the additional outputs by measuring 

the rotation of the bars on the yz and xz planes 

4 
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5 

Parameters of a TOBA 

Bar on x-axis 

Equation of motion 

κ : Spring constant, γ : dissipation coefficient  

Antenna response 
� Antenna pattern functions F+ and Fx 

 GW waveform 

GW signal 
+ Geometrical information 

(a) Single-output TOBA (b) Multiple-output TOBA 

Insensitive region 

Sensitive region 

9 Antenna configuration 
9 Antenna direction 
9 Antenna location 

6 

� Antenna pattern power 
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Monochromatic source 
� GW waveforms 

7 

9 Newtonian circular binary 

ι 
GWs 

z 

y 
x 

Circular orbit 
BH 

� GW signals of the N-th output 

GW phase 

8 

�Polarization phase 

Reflects the geometrical information on 
the antenna configuration 

�Doppler phase 

Induced by the relative motion between 
the antenna and the GW source 

Significant for short-duration observations 

N-th output signal 

Significant for long-duration observations 
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Angular resolution（single antenna case) 
� Angular resolution 
9Red line   : Multiple-output TOBA 
9Blue line :  Single-output TOBA 

9 

1 day 

9 frequency 1.0 [Hz] 
9 S/N = 10 
9 α=δ=1.0 [deg] 

� Short-duration signals (Tobs < 1 day) 
9Previous TOBA can’t specify the direction of the GW source. 
9 The angular resolution of the TOBA we proposed is of the order 

of 0.1 [str] thanks to having 3 independent signals. 

� Long-duration signals (Tobs  > 1 day) 
9 There is no difference between previous and new configuration. 
9 The main advantage of the multiple TOBA is just the 

accumulation of the signal-to-noise ratio. 

Summary 

10 

9We propose multiple-output configuration for a TOBA. 
9We investigate its angular resolution. 

� Inspiral GWs 
� Burst GWs 

� Continuous GWs 
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“How to probe string axiverse with gravitational wave 

observations” 

Hirotaka Yoshino

[JGRG24(2014)111203] 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Introduction

Very interesting era of GR

Advanced LIGO

Advanced VIRGO

KAGRA

One of the interesting possibilities is to find new physics 
beyond GR!



�389

CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Can we find a signal of string theory?

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, 
PRD81 (2010), 123530.

In string theory, many moduli appear when the extra dimensions get 
compactified.

Maybe Yes, if there are String Axions with very tiny mass

Some of them (10-100) are expected to behave like scalar fields with 
very tiny mass, which are called string axions.

AXIVERSE SCENARIO

Axion field around a rotating BH

Zouros and Eardley, Ann. Phys. 118 (1979), 139.

Detweiler, PRD22 (1980), 2323.

Axion field extracts BH rotation energy 
and forms an “axion cloud”

Gravitational Atom
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Kerr BH

Ergoregion

BH

Metric

ds2 = �
�

�� a2 sin2 �

⇥

⇥
dt2 � 2a sin2 �(r2 + a2 ��)

⇥
dtd⇥

+
�
(r2 + a2)2 ��a2 sin2 �

⇥

⇥
sin2 �d⇥2 +

⇥
�

dr2 + ⇥d�2

� = r2 + a2 cos2 �,
� = r2 + a2 � 2Mr.

J = Ma

�Tµ��µn� < 0

�µ
becomes spacelike

Energy density can be negative,

� < m�HSuperradiant condition:

Gravitational Atom

R =
u�

r2 + a2

d2u

dr2
�

+
�
�2 � V (�)

⇥
u = 0

� < �Hm

Superradiant 
condition

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

-100 -50  0  50  100

V

r
*
/M

!
2

V

I II III IV

� = Re[e�i⇥tR(r)S(�)eim�]

Massive Klein-Gordon field ⇥2�� µ2� =0

� = �R + i �I Unstable if positive
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Growth rate

Dolan, PRD76 (2007), 084001.

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Im
(!

 /
 !

)

M !

l = 1, m = 1

l = 2, m = 2

l = 3, m = 3

a = 0.999
a = 0.99
a = 0.95

a = 0.9
a = 0.8
a = 0.7

Growth rate (continued fraction method)

M = M�
�IM � 10�7 ⇥ � 1 min.
�IM � 10�12 ⇥ � 1 day

Typical time scale:

Physics of G-Atom

Kerr

BH

Accretion 

Disk

Axion Cloud

Gravitational Waves

Line 

emission 

2a  G

axions
photons

SR mode

Bosenova

Nonlinear self‐interaction

Detectable?
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� � 1

Bosenova

Tsr � 107M

Yoshino and Kodama, PTP128, 153 (2012)

Scalar field amplitude

Superradiant 
instability

Time

Gross phenomena of the BH-axion system

TBN � 100M

� � 1

V = f2
aµ2[1� cos(�/fa)]

� � �
fa

⇥2�� µ2 sin� = 0Tsr � 107M

Yoshino and Kodama, PTP128, 153 (2012)

Scalar field amplitude
Bosenova

Superradiant 
instability

Time

Gross phenomena of the BH-axion system

TBN � 100M
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� � 1

�

r�

Tsr � 107M

Yoshino and Kodama, PTP128, 153 (2012)

Scalar field amplitude
Bosenova

Superradiant 
instability

Time

Gross phenomena of the BH-axion system

TBN � 100M

� � 1

Tsr � 107M

TBN � 100M

Bosenova Bosenova

Superradiant 
instability

Scalar field amplitude
Bosenova

Superradiant 
instability

Superradiant 
instability

Superradiant 
instability

Time

Gross phenomena of the BH-axion system
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Bosenova Bosenova

� � 1

Tsr � 107M

TBN � 100M
Scalar field amplitude

Bosenova

Burst GW Burst GW Burst GW

Superradiant 
instability

Superradiant 
instability

Superradiant 
instability

Superradiant 
instability

Time

“Gravitational Lihgthouse”

Gross phenomena of the BH-axion system

Bosenova Bosenova

� � 1

Tsr � 107M

TBN � 100M
Scalar field amplitude

Bosenova

Superradiant 
instability

Superradiant 
instability

Superradiant 
instability

Superradiant 
instability

Time

“Gravitational Lihgthouse”

Gross phenomena of the BH-axion system

Burst GW Burst GW Burst GW
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Continuous GW emission

Amplitude of continuous GWs

(for l = m = 1, n=2 axion cloud)

�̃ = 2� � 2µFrequency of continuous GWs

In the approximation µM � 1

h0 � C

�
Ea

M

⇥
(µM)6

�
M

d

⇥

⇥2hµ� � 2R ⇥ ⇤
µ � h⇥⇤ = 16�G

�
Tµ� �

1
2
ḡµ�T ⇥

⇥

⇥
Equation

� ei(2�)t

Ignore nonlinear self-interaction

HY and Kodama, PTEP2014, 043E02 (2014)

Constraining string axion models 
from GW observation

arXiv:1407.2030
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PRD69, 082004 (2004);

LIGO’s science runs

They looked for continuous waves from distorted pulsars

Detectable amplitude can be made smaller
by increasing observation time

hrss � h
�

Tobs

…; arXiv:1311.2409 [gr-qc]

No GWs have been detected, 
upper limit on the amplitude is given.

LIGO’s continuous wave search
PRD87, 042001 (2013)
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Exploring Axiverse (1)

Consider continuous waves from BH-axion system

If we assume                      ,       

50 Hz � f � 1200 Hz
� 10�13 eV ⇥ µ ⇥ 2.4� 10�12 eV

M � 15M� 0.0125 �Mµ � 0.3

�
We use the approximate formula for small Mµ
We consider axion cloud in the l = m = 1 mode

� The wave form is same as the distorted pulsar case

h0 �
�

Ea

M

⇥
(µM)6

�
M

d

⇥
Amplitude:

Exploring Axiverse (2)

We adopt the axion cloud energy when the nonlinear self-
interaction becomes important

�max

fa
� 1⇥

8�e2

⇤
Ea

M

�
fa

Mp

⇥�1

(µM)2 � 1

� 10�22

⇤
fa

1016GeV

⌅2 ⇤
M

15M⇥

⌅3 � µ

10�12eV

⇥2
⇤

d

1kpc

⌅�1

< hUL

In order to exclude the situation where gravitational 
backreaction is significant, we require

Ea

M
< 0.05 � fa

1016GeV
< 0.1�

⇤
M

15M⇥

⌅2 � µ

10�12eV

⇥2
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Let us consider Cygnus X-1

M � 15M�

Excluded

Allowed

LIGO

aLIGO

⇤?⌅

0 5.⇤10�13 1.⇤10�12 1.5⇤10�12 2.⇤10�12
13

14

15

16

17

⇥ �eV⇥

L
o
g
1
0
⇤f a�G

eV
⇥⌅

Cygnus X�1

McClintock, et al., arXiv:1106.3688-3690{astro-ph}

d � 1.86 kpc

a/M � 0.95

Remark (1)

The result of the continuous wave search cannot be used in our 
case because

In the data analysis, isolated pulsar is assumed.

Cygnus X-1 is a binary system, and therefore, 
GW frequency fluctuates by the Doppler shift

The data analysis strongly depend on the assumed situation

Targeted search for continuous GWs from the Cygnus X-1 is 
necessary

Signal may be detected, or, a constraint can be obtained.
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Remark (2)

In our simulation, the nonlinear self-interaction causes radial 
oscillation of the axion cloud.

 0

 5

 10

 15

 20

 0  200  400  600  800  1000

r
*

(p
ea

k
)

t/M

(b)

Taking account of the Doppler shift due to axion cloud position, 
the GW frequency may fluctuate by about 3 %.

In our analyses of GW emissions, we have ignored the 
nonlinear self-interaction.

These modulations can be exactly determined by using the 
results of our direct numerical simulations including nonlinear 
self-interaction.

Summary
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Summary

It is possible to constrain string axion models from existing 
LIGO observational data.

Targeted search for continuous GWs from Cygnus X-1 is 
required to obtain rigorous constraint.

Prediction of GWs including the effect of nonlinear self-
interaction is necessary, and this study is now ongoing.

Thank you!
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“Black hole perturbation in modified gravity”  

Teruaki Suyama

[JGRG24(2014)111204] 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Teruaki Suyama 

Black hole perturbation in modified gravity 

Research Center for the Early Universe, University of Tokyo 

1 

Collaborators: Tsutomu Kobayashi(Rikkyo University), 
                          Hayato Motohashi (KICP, Chicago University) 

Refs. PRD 85 (2012) 084025 and PRD 89 (2014) 084042 

2 

Dawn of gravitational wave physics 

LIGO(H) 

LIGO(L) 

KAGRA 

VIRGO 

It is expected that gravitational waves (GWs) will be 
detected within a few years. 
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BH spacetime + linear perturbation 

Derivation of the perturbation equations and see differences from GR. 

Derivation of the stability conditions (which any healthy theory should 
satisfy). They should be known before the theory is compared with 
observations. 

As a first step, we consider static and spherically symmetric 
spacetime as BH spacetime and study linear perturbation. 

(involves gravitational waves) 

3 

Detection of GWs allows us to test modified 
gravity in strong gravity regime 

in modified gravity 

Typical system 

Horndeski theory (Modified gravity theories we consider) 

Scalar-tensor theory in which field equations are at most second 
order both in scalar field and metric field. (good framework to 
start with) 

This includes a wide range of modified gravity theories 
such as Brans-Dicke theory, f(R) theories, Gauss-Bonnet 
theories, Galileon theories as special cases. 
Formulation of BH perturbation in Horndeski theory 
(without specifying particular theory) thus provides 
general and versatile applicability.  

4 

Horndeski 1974 

Aim is to establish BH perturbation theory. 
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Horndeski theory 

Lagrangian is specified by four arbitrary functions. 

5 

BH perturbation 

even(no ε) odd(with ε) 
 ２ ＝    １    ＋     １ 

Example 

Decomposition of the perturbation variables into odd and even 
parity part defined on the spherical coordinate (θ, φ). 

6 

Background solutions 

A(r), B(r) : solution of background EOMs. 
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Odd parity case 

Odd parity metric perturbations 

7 

Scalar field does not acquire odd parity perturbation. 

Even parity case 

Not only metric but also scalar field are perturbed. 8 
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Metric perturbations are decomposed into odd and even parts. 

１０(total)＝３(odd)＋７(even) 

Advantage of this decomposition 
Linear perturbations for even and odd are decoupled. Thus we 
can solve them separately, which makes the analysis easier. 

As for the scalar field, we have 

１(total)＝0(odd)＋1(even) 

9 

10 

Perturbed variables (either odd-modes or even modes and 
particular multipole) 

Action second order in perturbation 

Identification of dynamical variables 

Derivation of Schrodinger type master equations 

Determination of perturbation behavior (stability, sound speed, etc.) 

Basic procedure  

Methodology is simple! 
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11 

Case of GR 

Perturbation of Schwarzshild spacetime 

Regge-Wheeler-Zerilli formalism 

12 (Misner, Thorne&Zurek, Physics today, 2009) 

Computation is cumbersome even in GR. 

Regge Wheeler 
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Odd type perturbation equations were successfully compactified 
into a single master equation (Regge-Wheeler equation). 

13 Represents propagation of gravitational wave. 

14 

Even type perturbation equations, due to complex structure of 
perturbation equations, were not successfully compactified into 
a single master equation.    

(Regge&Wheeler, 1959) 
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15 

A master equation for the even-parity perturbations was 
successfully derived. 

13 years gap!! 
Regge-Wheeler eq. (1957) 

Zerilli eq. (1970) 

16 

We have shortened 13 years gap to 2 years gap!! 

Master equation of odd-parity perturbation in 2012 

Master equations of even-parity perturbation in 2014 

Since we have scalar field in addition to the metric, we obtain 
coupled equations for two dynamical variables (GW and scalar 
wave). 

BH perturbation in the Horndeski theory 

One big difference from GR 

As expected, master equations take forms of the 
Schrodinger equation. 
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17 

Table 

No-ghost  

Odd-parity Even-parity 

DOF 

Propagation 
speeds  

1 (only GW) 2 (GW and scalar wave) 

No-gradient 
instability  

18 
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Summary  

BH perturbation in the Horndeski framework was formulated 
(Both for odd parity and even parity perturbations). 

Dynamical degrees of freedom: 1 for odd parity and 2 for even parity. 

Gravitational odd and even parity perturbations propagate at the 
same speed. But the scalar wave propagates at different speed in 
general. They are independent of the multipole L. 

Healthy conditions such as no-ghost condition are obtained. 

Master equations are derived. 

This formulation can be applied to a wide range of modified gravity 
theories such as f(R), Galileon gravity, kinetic braiding gravity, etc.  

19 

20 

appendix 
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Odd parity case (T.Kobayashi, H.Motohashi and TS, 2012) 

Odd parity perturbations 

Gauge fixing 

21 

Scalar field does not acquire odd parity perturbation. 

Computation of the 2nd order action shows that one field 
is an auxiliary field. (1 dynamical degree of freedom) 

Once Q is solved, h0 and h1 are uniquely determined. 

22 

Final 2nd order Lagrangian 
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These quantities are uniquely determined once 
modified gravity Langrangian and background 
solutions are provided. 

23 

Master equation 

Stability conditions 

No-ghost condition 

Propagation speed 

radial angular 

They are generally different from the velocity of light. 
(but do not depend on multipole L) 

24 
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Dipole perturbation (L=1) 

This mode is exceptional in the sense that no dynamical field 
appears. 

This represents a slowly rotating BH. (In GR, this coincides with a 
Kerr metric expanded to first order in the angular momentum.) 

25 

Even parity case (Kobayashi, Motohashi and TS, 2014) 

Not only metric but also scalar field are perturbed. 

Gauge fixing 

Gauge fixing 

26 
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2nd order Lagrangian 

After some manipulations, we end up with two dynamical fields. 

K,G,Q and M are background dependent 2×2 matrices. 

• second order field equations which is a characteristic of 
the Horndeski theory. 

Explicit confirmation of  

• 2 dynamical degrees of freedom (one gravitational 
wave and one scalar wave). 

Variations yield a closed set of wave equations. 

27 

This is a generalization of the Zerilli equation. 

Master equation in GR 

In the Horndeski case, we have two dynamical variables 
(scalar and gravitational wave). 

28 

In the GR limit, degrees of freedom is reduced and we 
go back to the Zerilli equation. 
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No-ghost conditions 

As a result, we obtain a concise formula. 

29 

This imposes further restriction on the modified gravity 
theory. 

Propagation speeds 

Interestingly,        coincides with the one of the odd parity 
perturbation. Odd parity and even parity gravitational waves 
propagate at the same speed (but not necessarily equal to c). 

(gravitational wave) 

(scalar wave) 

If odd and even parity gravitational waves turn out to propagate 
with different speeds, all the theories in the Horndeski class is 
excluded!! 

Propagation speed of the scalar wave is generally different from 
that of the gravitational waves. 30 

These should be positive as well. 
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Monopole perturbation (L=0) 

In GR, such perturbation does not exist. But in Horndeski theory, 
it does. (existence of the scalar wave) 

The same propagation speed as that for higher multipoles. 
The same no-ghost condition as that for higher multipoles. 

31 

Dipole perturbation (L=1) 

In GR, such perturbation does not exist. But in Horndeski theory, 
it does.  

The same propagation speed as that for higher multipoles. 
The same no-ghost condition as that for higher multipoles. 

32 
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This is a generalization of the Regge-Wheeler equation. 

Master equation in GR 

Our master equation reduces to the Regge-Wheeler 
equation in the GR limit. 

33 

34 

BBMB solution 

Horizon at r=M 

Unstable for r< 2M 

Therefore, BBMB solution is unstable. 
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35 

Background solution Babichev&Charmousis(2013) 

36 
Stable regions are colored red. 
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“Derivation of higher dimensional black holes in the large 

D limit” 

Ryotaku Suzuki

[JGRG24(2014)111205] 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Derivation of higher 
dimensional black holes in 

the large D limit


Ryotaku Suzuki (Osaka City U.)

based on recent works in collaboration with  
Roberto Emparan, Takahiro Tanaka,  
Kentaro Tanabe, Tetsuya Shiromizu

JGRG24, 10-14 November 2014, IPMU, Japan

Motivation
In Higher Dimension, BH of various topology is possible,!
but the phase of BHs are still unclear.!
In D>5, no general technique for solving Einstein Eq.

We need help of Approximations in higher dimension

Applied to BHs with large hierarchy in horizon scales
Blackfold approach

 Ex) Black ring, saturn, di-ring in thin ring limit, etc.

Emparan et.al. (2007)

Large D limit Emparan, RS, Tanabe (2013)

not quantitatively good for low D
but applied to more general configurations



�422

Large D limit

S =

Z
dx

D
R

Variables = ( D＝∞ )＋( 1/D correction) ＋…

D ! 1

�!

Vacuum Einstein equation

Take as if D is a continuous parameter

Einstein eq. is expanded by 1/D!
                  , then solved order by order 

Leading

Gravity in Large D limit
New Hierarchy

Simplification of Einstein Eq.
ex) PDE→ODE, 
      decoupling of variables

r � r0 ⌧ r0

Near zone

� ⇠
⇣r0
r

⌘D�3

BH

r0/D ⌧ r � r0 ⌧ r0Overlap zone
→ Matching Near and Far Sols.

Gravity
r0

⇠ r0/D

r � r0 � r0/D

Far zone

≈ Minkowski
exponentially 
suppressed
⌧ 1/Dk
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We have shown BH perturbations are well described by 
analytically in the large D limit. Followings are studied

-  Gregory-Laflamme instability    
- QNMs of BH (AdS/rotating/brane)    
- Inst. of MPBH (bar/axissym. modes)                    
　　　　　　　　　　　　　　　　　　　　　etc...

How about beyond linear analysis ?

Large D limit for BH perturbations

5

Emparan, RS, Tanabe (2013)

Emparan, RS, Tanabe (2014)

Asnin et.al.(2007)

Outline

1. Einstein Equation in the large D limit!
!

2. Example: Non-Uniform black string!
!

3. Summary
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Outline

1. Einstein Equation in the large D limit!
!

2. Example: Non-Uniform black string!
!

3. Summary

Hierarchy at Large D limit

8

� ⇠
⇣r0
r

⌘D�3

⇠ r0

⇠ r0
D

Horizon
@
xi

If
Einstein Eq → ODE(R)+PDE(x)

Decoupling of Equations
@
r

⇠ D@R � @
xi

r � r0 < r0/D

Near coordinate

R =

✓
r

r0

◆D�3

) r ' r0 +
r0
D

lnR

Gravity is localized near H
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Setup

9

d+1 decomposition

⇠ r0
D

Horizon
@
xi

@⇢
ds

2 = N

2(⇢, x)d⇢2 + gµ⌫(⇢, x)dx
µ
dx

⌫

Assumptions
r ⇠ r0 +

⇢

DN ' N0(x)

D

:

2 gµ⌫dx
µ
dx

⌫

D-p sphere
R0(x)e

�(⇢,x)
D

d⌦2
D�p 2 gµ⌫dx

µ
dx

⌫

ex) ⇢ = lnR

Large D limit of Einstein Eq

Evolution Eq. is reduced to ODE in radial coordinate

Other components
1

N
@⇢K

µ
⌫ = KKµ

⌫ �Rµ
⌫ +

1

N
rµr⌫N

Trace of Evolution Equation
1

N
@⇢K = K2 �R+

1

N
r2N

⇠ O(D)⇠ O(D2)

: Horizon
⇢ = C(x)

K = � 1

R0
coth

N0

R0
(⇢� C(x))

Integral const.

Constraint Eq. detemines. for Integral constants  : C(x)

⇠ O(D2)

' �D2

R2
0

+O(D)

curvature of Sph.

Subleading Eqs. becomes linear perturbations
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Outline

1. Einstein Equation in the large D limit!
!

2. Example: Non-Uniform black string!
!

3. Summary

Non Uniform Black String

12

Large D limit of the non-uniform black string

August 29, 2014

Abstract

In this note , we will study the large D limit of the solution of the Einstein equation
in the static cylindrically symmetric spacetimes.

1 Derivation of the large D limit of the horizon

In this section, we will work on the following ansatz which represents the general
D = n+ 4 axisymmetric spacetime

ds

2 = �Adt

2 +B

�
dr

2 + dz

2
/n

�
+ r

2
Cd⌦2

n+1 (1.1)

where we use dz

2
/n instead of dz2, since we already know kGL ' p

n. The metric
variables are expanded as

A =
X

k=0

A

(k)

n

k
, B =

X

k=0

B

(k)

n

k+1
, C =

X

k=0

C

(k)

n

k+1
(1.2)

Leading order Actually, we can impose the asymptotic flatness in the leading order
as

A

(0)(R, z) =

✓
R�M0(z)

R+M0(z)

◆2

, C

(0) = 4 ln

✓
1 +

M0(z)

R

◆

B

(0)(R, z) =
4(�M0(z)M 00

0 (z) +M

0
0(z)

2))

M0(z)2
ln

✓
1 +

M0(z)

R

◆
, (1.3)

Again, we have an arbitrary function M0(z). The leading order metric becomes

ds

2 = �
✓
R�M0(z)

R+M0(z)

◆2

dt

2 +

✓
R

R+M0(z)

◆ 4(M
0

(z)M00
0

(z)�M0
0

(z)2)

nM
0

(z)2

(dr2 + dz

2
/n)

+ r

2

✓
R+M0(z)

R

◆4/n

d⌦2
n+1 (1.4)

1

Ansatz ( Conformal coordinate)

R =

✓
r

r0

◆D�4

r !

n = D � 4

Boundary condition!
Regularity at     　　　　　   , a-flatness R→∞R = M0(z) +O(n�1)

z

r=) expansion by 1/n

Leading order

Large D limit of the non-uniform black string

August 29, 2014

Abstract

In this note , we will study the large D limit of the solution of the Einstein equation
in the static cylindrically symmetric spacetimes.

1 Derivation of the large D limit of the horizon

In this section, we will work on the following ansatz which represents the general
D = n+ 4 axisymmetric spacetime

ds

2 = �Adt

2 +B

�
dr

2 + dz

2
/n

�
+ r

2
Cd⌦2

n+1 (1.1)

where we use dz

2
/n instead of dz2, since we already know kGL ' p

n. The metric
variables are expanded as

A =
X

k=0

A

(k)

n

k
, B =

X

k=0

B

(k)

n

k+1
, C =

X

k=0

C

(k)

n

k+1
(1.2)

Leading order Actually, we can impose the asymptotic flatness in the leading order
as

A

(0)(R, z) =

✓
R�M0(z)

R+M0(z)

◆2

, C

(0) = 4 ln

✓
1 +

M0(z)

R

◆

B

(0)(R, z) =
4(�M0(z)M 00

0 (z) +M

0
0(z)

2))

M0(z)2
ln

✓
1 +

M0(z)

R

◆
, (1.3)

Again, we have an arbitrary function M0(z). The leading order metric becomes

ds

2 = �
✓
R�M0(z)

R+M0(z)

◆2

dt

2 +

✓
R

R+M0(z)

◆ 4(M
0

(z)M00
0

(z)�M0
0

(z)2)

nM
0

(z)2

(dr2 + dz

2
/n)

+ r

2

✓
R+M0(z)

R

◆4/n

d⌦2
n+1 (1.4)

1

Large D limit of the non-uniform black string

August 29, 2014

Abstract
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Deformation Equation

13

This coincides with the large D limit of the uniform black string metric, assuming
M0(z) is a constant
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Next-to-Leading order Imposing the asymptotic flatness, we can obtain the de-
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= aM0(z) + b (1.7)

here a can be set to 0 replacing by M0(z) ! e

a
M0(z). If you want recover the scaling,
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This potential has two minima at m = ±1 and one maximum at m = 0 (Fig. 1). The
parameter should take b � �1. From the Eqs.(1.6) and (1.7),
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Analysis of Deformation equation

July 17, 2014

Abstract

In this note , we will study the solution of the horizon deformation equation found
in the large D analysis of NUBS.

1 Horizon deformation equation

We starts from the following equations which have a scaling parameter a
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This can be integrated further by multiplying M 0
0(z),

M0(z) lnM0(z)�M0(z) +
M 0

0(z)
2

2M0(z)
= aM0(z) + b (1.2)

Combining the two equations, we can make an scale invariant form

M 00
0 (z)

M0(z)
� M 0

0(z)
2

M0(z)2
+ 1 +

b

M0(z)
= 0. (1.3)

2 Potential
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In this note , we will study the solution of the horizon deformation equation found
in the large D analysis of NUBS.
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Solutions

15

1 2 3 4
z

0.0

0.5

1.0

1.5

2.0

2.5
M HzL

b = -1., -0.96875, -0.875, -0.71875, -0.5, -0.21875

⇥
p
n

a = 0scaling: 

UBS

NUBS

p
nL/2 ' ⇡ +O(b+ 1)

Sol. for M_max to M_min
z(m̃) =

Z m̃

M̃
max

dM̃

2M̃(b+ M̃ � M̃ ln M̃)

Summary

16

Thank you !

• We show the Einstein Eq. is separated to ODE in 
radial and PDE in the other coordinates in the 
limit.!

• We analysed NUBS for the simplest example!

• Extension to AdS BHs and Stationary BHs are 
also possible (Work in progress)!

• Time dependent case will be more interesting.
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14年11月12日水曜日

Abstract

In 5d black ring, particle system(geodesics) shows 

chaos
unlike the case in 4d Kerr black hole. In this talk, 
however, we show that 

recovery of integrability 
of particle system in the Newtonian limit of 
5d black ring. 

2/16
14年11月12日水曜日
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Introduction
ー integrable system, Newtonian gravity ー

‣ Integrable particle system：
・#(COM) ≧ #(DOF)
・understand qualitative properties in analytical way

‣ Integrable particle system in Newtonian gravity
・Kepler problem
　
・Euler’s three body problem

　
3/16

V / �M

r

V / � M1

|r � a| �
M2

|r + a|

14年11月12日水曜日

Introduction
ー relativistic case ー

‣ background spacetimes of integrable particle system
• 4-dimensional Kerr BH [Carter 1968]
• higher-dimensional Myers-Perry BH [e.g., Yasui&Houri 2011]

4/16

　non-trivial constants of motion (Carter’s constants)

Hamilton-Jacobi equation occurs the separation of variables

14年11月12日水曜日
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Motivation

‣ general potential in Newton gravity leads chaos
‣ backgrounds of chaotic particle system
• 4d and HD multi-BH [Contopoulos 1990, Hanan&Radu 2007]
• 5d black ring [T.I, Ishihara&Takamori 2011]

5/16
14年11月12日水曜日

questions

・limit to recover integrability？

・Is chaos whether relativistic effect or not ?

6/16

Let’s find a non-trivial constant in Newtonian limit 
of particle system in 5d black ring.

For chaotic particle system in 5d black rings,

14年11月12日水曜日
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main contents

(1)   5d black ring metric

(2)   Newtonian limit of geodesic equation
   ・ prescription
   ・ Newtonian gravitational potential

(3)   Application of Hamilton-Jacobi method
　・ suitable coord. for separation of variables
　・ a separation constant

(4)　conclusion

7/16
14年11月12日水曜日

main contents

(1)   5d black ring metric

(2)   Newtonian limit of geodesic equation
   ・ prescription
   ・ Newtonian gravitational potential

(3)   Application of Hamilton-Jacobi method
　・ suitable coord. for separation of variables
　・ a separation constant

(4)　conclusion

8/16
14年11月12日水曜日
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• ring radius：R
• thickness：ν
• Horizon：
• Killing vectors：
• polar coordinates：

　　　　　　5d Black Ring [Emparan&Reall 2002]     

ds

2 = �F (y)

F (x)

✓
dt� CR

1 + y

F (y)
d 

◆2

+
R

2

(x� y)2
F (x)

✓
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F (y)
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2 � dy

2

G(y)
+

dx

2

G(x)
+

G(x)

F (x)
d�

2

◆

F (⇠) = 1 + �⇠, G(⇠) = (1� ⇠2)(1 + ⌫⇠), C =

r
�(�� ⌫)

1 + �

1� �
, � =

2⌫

1 + ⌫2

@t, @�, @ 

⇣ = R

p
y

2 � 1

x� y

, ⇢ = R

1� x

2

x� y

S2 ⇥ S1

(ds2 = �dt2 + d⇢2 + ⇢2d�2 + d⇣2 + ⇣2d 2)

y = �1

⌫

9/16

contours of constant x and constant y inζ-ρ plane

14年11月12日水曜日

Newtonian limit of geodesic equation
in thin black ring

‣ prescription
• slow motion limit：
• weak gravitational limit：

‣ Newtonian gravitational potential：

gµ⌫ = ⌘µ⌫ + hµ⌫

�(r) = �1

2
h00

(|hµ⌫ | ⌧ 1)

10/16

d

2
x

µ

dt

2
� 1

2
⌘

µ⌫
@⌫h00 = 0

: ADM mass

⌫ ⌧ 1

= � M

2
p

(⇣ +R)2 + ⇢2
p

(⇣ �R)2 + ⇢2

M =
2�R2

1� ⌫

v ⌧ 1

14年11月12日水曜日
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Newtonian gravitational sense

‣ homogeneous ring source

‣ 5d Newton’s grav. eq

‣ solution:

�(r) =
M

(2⇡)2⇣ ⇢
�(⇣ �R) �(⇢)

r2�(r) = S3G�(r)

equipotential surface
(Cassini ovals)

11/16

�(r) = � GM

2
p
(⇣ +R)2 + ⇢2

p
(⇣ �R)2 + ⇢2

14年11月12日水曜日

main contents

(1)   5d black ring metric

(2)   Newtonian limit of geodesic equation
   ・ prescription
   ・ Newtonian gravitational potential

(3)   Application of Hamilton-Jacobi method
　・ suitable coord. for separation of variables
　・ a separation constant

(4)　conclusion

12/16
14年11月12日水曜日
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Particle system around a ring source

• Hamiltonian（non-separable in (ζ, ρ)）

• coordinate transformation

H =
1

2m

✓
p2⇣ +

p2 
⇣2

+ p2⇢ +
p2�
⇢2

◆
� GMm

2 r+r�

r± = R (⇠ ± ⌘)

(spheroidal coordinates)

13/16

r± =
p
(⇣ ±R)2 + ⇢2

14年11月12日水曜日

Particle system in a ring source

‣ Hamiltonian (separable form)

H =
1

2mR2(⇠2 � ⌘2)


(⇠2 � 1) p2⇠ + (1� ⌘2) p2⌘

+

✓
1

⌘2
� 1

⇠2

◆
p2 +

✓
1

⇠2 � 1
+

1

1� ⌘2

◆
p2�

�
� GMm

2R2(⇠2 � ⌘2)

⇒ Hamilton-Jacobi Eq. is separable

14/16
14年11月12日水曜日
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Carter’s constant

‣ non-trivial separation constant

‣ Poisson commutable constants: 

L2 = (⇣ p⇢ � ⇢ p⇣)
2 + (⇣2 + ⇢2)

 
p2 
⇣2

+
p2�
⇢2

!

: sum of squared angular momenta

15/16

C = L2 +R2

 
p2⇣ +

p2 
⇣2

!
� GMm2

4

r2+ + r2�
r+r�

where

(p�, p , H,C) integrable!

14年11月12日水曜日

conclusion

• HJeq is separable in spheroidal coordinates
• Non-trivial constant of motion quadratic in p

16/16

The Newtonian limit of geodesic eq in 5d thin black ring 
leads to EOM of a particle in Newtonian gravitational 
potential of a homogeneous ring source.

The Newtonian limit of particle system in 5d thin black 
ring is the limit to recover integrability. Therefore, we can 
understand that the appearance of chaotic geodesic is 
relativistic effect. 

14年11月12日水曜日
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Cosmological Evolution of the
Chameleon Field in the Presence
of the Compact Object
The University of Tokyo, RESCEU K. Takahashi, J. Yokoyama

Introduction
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¾ Dark Energy Problem
�What is dark energy? What is the origin of the cosmic acceleration?

→ cosmological constant, modified gravity, etc. 

�𝑓(𝑅) gravity is one of the candidates.

�In 𝑓(𝑅) gravity, the EOS parameter 𝑤DE deviates from −1.

�Previous work (P. Brax et al., Phys. Rev. D 78, 104021 (2008))

1 + 𝑤DE ΩDE < Φ𝑁

Φ𝑁: Newton’s potential for a “thin-shell” object

2014/11/12 JGRG24 3

Really?

¾ 𝑓(𝑅) Gravity
�Action

𝑆 =
𝑀Pl2

2  𝑑
4𝑥 −𝑔𝑓(𝑅) + 𝑆m(𝑔𝜇𝜈, Ψ)

�Conformal transformation
𝑔𝜇𝜈 →  𝑔𝜇𝜈 = 𝑓′ 𝑅 𝑔𝜇𝜈

𝑆 =  𝑑4𝑥 −  𝑔
𝑀Pl2

2
 𝑅 −

1
2
 𝛻𝜙 2 − 𝑉(𝜙) + 𝑆m(𝑒2𝛽𝜙/𝑀Pl  𝑔𝜇𝜈,Ψ)

2014/11/12 JGRG24 4

matter field

GR scalar field
𝜙 couples to matter

𝑓′ 𝑅 ≡ 𝐹 𝑅 ≡ 𝑒−2𝛽𝜙/𝑀Pl, 𝛽 ≡
1
6

𝑉 𝜙 =
1

16𝜋𝐺
𝑅𝐹 − 𝑓
𝐹2

fifth force
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2014/11/12 JGRG24 5

small 𝜌 large 𝜌

large 𝜙min small 𝜙min

0 = 𝑉eff
′ 𝜙min = 𝑉′ 𝜙min +

𝛽
𝑀Pl

 𝜌m𝑒𝛽𝜙min/𝑀Pl

¾ Chameleon Mechanism

𝑉eff 𝜙 ≡ 𝑉 𝜙 +  𝜌m𝑒𝛽𝜙/𝑀Pl

¾ Thin-Shell Solution

2014/11/12 JGRG24 6

𝑅𝑐

𝑔𝜇𝜈 = 𝜂𝜇𝜈 (Minkowski metric)

𝜌 = 𝜌𝑏 𝜌 = 𝜌𝑐
𝜙 = 𝜙𝑏

outside

𝜙 = 𝜙𝑐

inside

𝑅𝑠

thin-shell
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¾ Thin-Shell Solution

𝜖th ≡
𝑀Pl
𝛽

𝜙𝑏 − 𝜙𝑐
𝑅𝑐
2𝜌𝑐

≈
𝑅𝑐 − 𝑅𝑠

𝑅𝑐
: thin‐ shell parameter

2014/11/12 JGRG24 7

𝑅𝑐𝑅𝑠 𝑟

𝛿𝜙 ≡ 𝜙 − 𝜙𝑏

0

𝜙𝑐 − 𝜙𝑏

surface

¾ Thin-Shell Solution
�Requirements
z static
z 𝜙 = 𝜙𝑐 if 𝑟 < 𝑅𝑠
z 𝜙 → 𝜙𝑏 as 𝑟 → ∞
z smooth at 𝑟 = 𝑅𝑠, 𝑅𝑐
z 𝑅𝑐 ≪ 𝑚𝑏

−1

𝛿𝜙 =

𝛿𝜙𝑐 , 𝑟 < 𝑅𝑠

𝛽𝜌𝑐
3𝑀Pl

𝑟2

2 +
𝑅𝑠3

𝑟 −
3
2𝑅𝑠

2 + 𝛿𝜙𝑐 , 𝑅𝑠 < 𝑟 < 𝑅𝑐

−
𝛽𝜌𝑐
3𝑀Pl

𝜖th
𝑅𝑐3

𝑟 𝑒−𝑚𝑏 𝑟−𝑅𝑐 , 𝑟 > 𝑅𝑐

𝜖th ≡
𝑀Pl
𝛽

𝛿𝜙𝑐
𝑅𝑐2𝜌𝑐

≈
𝑅𝑐 − 𝑅𝑠
𝑅𝑐

: thin‐ shell parameter

2014/11/12 JGRG24 8

𝛿𝜙 ≡ 𝜙 − 𝜙𝑏
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¾ Fifth Force
�Fifth force (per unit mass)

𝐹 =
𝛽
𝑀Pl

𝛻𝜙

�Outside a thin-shell object

𝐹𝜙 =
𝜖th
3
𝐺𝑀𝑐
𝑟2 1 + 𝑚𝑏𝑟 𝑒−𝑚𝑏 𝑟−𝑅𝑐

𝐹𝜙
𝐹𝑁

= 𝛰 𝜖th

�Fifth force is small if 𝜖th < 1.

�The condition for thin-shell can be rewritten as
𝛽
𝑀Pl

𝛿𝜙𝑐 < Φ𝑁

�This explains why 𝑓 𝑅 gravity can pass local tests.

2014/11/12 JGRG24 9

𝐹𝑁 ≡
𝐺𝑀𝑐
𝑟2

Previous Work
P. Brax et al., Phys. Rev. D 78, 104021 (2008)

2014/11/12 JGRG24 10
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¾ P. Brax et al.
�Friedmann eq. (background)

𝐻2 =
8𝜋𝐺
3

𝜌matter
𝐹 + 𝐹𝑉(𝜙𝑏) +

2𝛽
𝑀Pl

𝐻  𝜙𝑏 ≡
8𝜋𝐺
3𝐹0

𝜌matter + 𝜌DE

�Conservation law
 𝜌DE + 3𝐻 1 + 𝑤DE 𝜌DE = 0

1 + 𝑤DE ΩDE =
2𝛽
3𝑀Pl

 𝜙𝑏
𝐻 −

 𝜙𝑏
𝐻2 +

𝛽
3𝑀Pl

 𝜙𝑏2

𝐻2 + 𝑒−2𝛽 𝜙0−𝜙𝑏 /𝑀Pl − 1 Ωmatter

�Order of magnitude

1 + 𝑤DE ΩDE ∼ 𝛰
𝛽
𝑀Pl

Δ𝜙

2014/11/12 JGRG24 11

Δ𝜙: change of 𝜙𝑏 in Hubble time

¾ P. Brax et al.
1 + 𝑤DE ΩDE ∼ 𝛰

𝛽
𝑀Pl

Δ𝜙

�Δ𝜙: change of 𝜙𝑏 from 𝑡 to 𝑡0
�Chameleon mechanism

𝜌𝑐 > 𝜌𝑏 𝑡 > 𝜌𝑏 𝑡0 ⇒ 𝜙𝑐 < 𝜙𝑏 𝑡 < 𝜙𝑏 𝑡0

𝛽
𝑀Pl

Δ𝜙 <
𝛽
𝑀Pl

𝛿𝜙𝑐 𝑡0

�Assume the fifth force is small ⇔ the object has thin-shell

𝛽
𝑀Pl

𝛿𝜙𝑐 𝑡0 < Φ𝑁

2014/11/12 JGRG24 12

𝜙𝑏 is assumed to follow 
the minimum of 𝑉eff 𝜙

1 + 𝑤DE ΩDE < Φ𝑁

It is not trivial whether we 
can use thin-shell solution if 
the background is expanding

𝛿𝜙𝑐 𝑡0 ≡ 𝜙𝑐 − 𝜙𝑏 𝑡0
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Our Work

2014/11/12 JGRG24 13

¾ Our Work

2014/11/12 JGRG24 14

𝑅𝑐

𝑔𝜇𝜈 = 𝜂𝜇𝜈 (Minkowski metric)

𝜌 = 𝜌𝑏 𝜌 = 𝜌𝑐
𝜙 = 𝜙𝑏

outside

𝜙 = 𝜙𝑐

inside

𝑅𝑠

thin-shell

FLRW metric
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¾ Formalism
�Metric

𝑔𝜇𝜈 = − 1 + 2Ψ 𝑑𝑡2 + 𝑎2 1 + 2Φ 𝑑𝒙2

�Conformal transformation
 𝑔𝜇𝜈 = 𝑒−2𝛽(𝜙𝑏+𝛿𝜙)/𝑀Pl𝑔𝜇𝜈

= −𝑒−
2𝛽𝜙𝑏
𝑀Pl 1 + 2 Ψ 𝑑𝑡2 + 𝑒−

2𝛽𝜙𝑏
𝑀Pl 𝑎2 1 + 2 Φ 𝑑𝒙2

 Φ ≡ Φ−
𝛽
𝑀Pl

𝛿𝜙,  Ψ ≡ Ψ −
𝛽
𝑀Pl

𝛿𝜙

�Density

𝜌 =  𝜌𝑐 , 𝑎𝑟 < 𝑅𝑐
𝜌𝑏 , 𝑎𝑟 > 𝑅𝑐

𝜌𝑏 ∝ 𝑎−3

2014/11/12 JGRG24 15

¾ Equations of Motion
�Einstein eq.

−
Δ
𝑎2

 Φ + 3 𝐻   Φ −  𝐻 Ψ = 4𝜋𝐺 𝐹 𝑉 𝜙 − 𝑉 𝜙𝑏 +
𝜌 − 𝜌𝑏
𝐹 +

4𝛽
𝑀Pl

𝜌
𝐹 𝛿𝜙 −  𝜙𝑏

2 Ψ +  𝜙𝑏  𝛿𝜙

𝜕𝑖   Φ −  𝐻 Ψ =
4𝜋𝐺𝜌
𝐹 𝛿𝑢𝑖

 Φ +  Ψ = 0

�Klein-Gordon eq.

−  𝛿𝜙 − 3𝐻  𝛿𝜙 +
Δ
𝑎2 𝛿𝜙 = 𝐹 𝑉′ 𝜙 − 𝑉′ 𝜙𝑏 +

𝛽
𝑀Pl

(𝜌 + 3𝑃) − 𝜌𝑏
𝐹 +

16𝜋𝐺𝜌
3𝐹 𝛿𝜙 +  𝜙𝑏 3   Φ −   Ψ +

4𝛽
𝑀Pl

 𝜙𝑏
2Ψ

−  𝛿𝜙 − 3𝐻  𝛿𝜙 +
Δ
𝑎2 𝛿𝜙 = 𝑉eff′ 𝜙 − 𝑉eff′ 𝜙𝑏

2014/11/12 JGRG24 16

 𝐻 ≡ 𝐻 −
𝛽
𝑀Pl

 𝜙𝑏

|Φ|, |Ψ| ≪ 1
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¾ Naïve “solution”
�Introduce time dependence to thin-shell solution:

𝑟 → 𝑎𝑟, 𝜙𝑏 → 𝜙𝑏 𝑡

𝛿𝜙 𝑡 =

𝛿𝜙𝑐 𝑡 , 𝑎𝑟 < 𝑅𝑠 𝑡

𝛽𝜌𝑐
3𝑀Pl

𝑎𝑟 2

2 +
𝑅𝑠 𝑡 3

𝑎𝑟 −
3
2𝑅𝑠 𝑡

2 + 𝛿𝜙𝑐 , 𝑅𝑠 𝑡 < 𝑎𝑟 < 𝑅𝑐

−
𝛽𝜌𝑐
3𝑀Pl

𝜖th(𝑡)
𝑅𝑐3

𝑎𝑟 𝑒
−𝑚𝑏(𝑡) 𝑎𝑟−𝑅𝑐 , 𝑎𝑟 > 𝑅𝑐

𝜖th 𝑡 ≡
𝑀Pl
𝛽

𝛿𝜙𝑐 𝑡
𝑅𝑐2𝜌𝑐

≈
𝑅𝑐 − 𝑅𝑠(𝑡)

𝑅𝑐

2014/11/12 JGRG24 17

𝛿𝜙 𝑡 ≡ 𝜙 − 𝜙𝑏 𝑡

¾ Is It Really a Solution?
�Outside the object

−  𝛿𝜙 − 3𝐻  𝛿𝜙 +
Δ
𝑎2 − 𝑚𝑏

2 𝛿𝜙 = 0

Here
 𝛿𝜙, 3𝐻  𝛿𝜙 ≈ 𝐻2𝛿𝜙
Δ
𝑎2 𝛿𝜙 ≈ 𝑚𝑏

2𝛿𝜙

�Perturbative treatment
𝛿𝜙 ≡ 𝛿𝜙 0 + 𝛿𝜙 1

�Equation for 𝛿𝜙 1

−  𝛿𝜙 1 − 3𝐻  𝛿𝜙 1 +
Δ
𝑎2 − 𝑚𝑏

2 𝛿𝜙 1 =  𝛿𝜙 0 + 3𝐻  𝛿𝜙 0

𝛿𝜙 1 ≈ (𝐻𝑎𝑟)
𝐻
𝑚𝑏

𝛿𝜙 0

�Evaluate at 𝑎𝑟 = 𝑚𝑏
−1

𝛿𝜙 1 ≈
𝐻
𝑚𝑏

2

𝛿𝜙 0

2014/11/12 JGRG24 18

same order
(for models in which 𝑚𝑏 ∼ 𝐻)

≈ 𝛿𝜙 0

※inside
Δ
𝑎2 ≈ 𝑅𝑐−2 ≫ 𝐻2
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¾ P. Brax et al. (again)
1 + 𝑤DE ΩDE ∼ 𝛰

𝛽
𝑀Pl

Δ𝜙

�Δ𝜙: change of 𝜙𝑏 from 𝑡 to 𝑡0
�Chameleon mechanism

𝜌𝑐 > 𝜌𝑏 𝑡 > 𝜌𝑏 𝑡0 ⇒ 𝜙𝑐 < 𝜙𝑏 𝑡 < 𝜙𝑏 𝑡0

𝛽
𝑀Pl

Δ𝜙 <
𝛽
𝑀Pl

𝛿𝜙𝑐 𝑡0

�Assume the fifth force is small ⇔ the object has thin-shell

𝛽
𝑀Pl

𝛿𝜙𝑐 𝑡0 < Φ𝑁

2014/11/12 JGRG24 19

𝜙𝑏 is assumed to follow 
the minimum of 𝑉eff 𝜙

1 + 𝑤DE ΩDE < Φ𝑁

It is not trivial whether we 
can use thin-shell solution if 
the background is expanding

𝛿𝜙𝑐 𝑡0 ≡ 𝜙𝑐 − 𝜙𝑏 𝑡0

¾ Summary
�𝑓 𝑅 gravity can be reformulated into chameleon theory.
�If an object has thin-shell solution, then the fifth force is suppressed.

�We demonstrated that if the background spacetime is expanding, the 
thin-shell solution can be strongly modified outside the object.
�This modification propagates to fifth force.
�Then small thin-shell parameter no longer corresponds to small fifth 

force.
�The constraint on 𝑤DE breaks down.

2014/11/12 JGRG24 20
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Observational constraint on a generalized 
Galileon model from the gas and shear 
profiles of  a cluster of  galaxies

JGRG24 @ Kavli IPMU 14/11/12

Ayumu Terukina   (Hiroshima Univ.)

• Introduction

• Generalized Galileon model

• Cluster’s observation of  gas and shear 

• Constraint on gravity model

• Summary

Contents

Collaboration with Kazuhiro Yamamoto

Introduction

Modified gravity
・To explain the accelerated expansion of  the Universe.

・Additional degrees of  freedom.

・Recovery of  the local gravity (Screening mechanism)

Test of  modified gravity
・Cluster of  galaxies（~Mpc）

？
Modified gravityGeneral relativity

Scalar field is screened

nonlinear scales linear scales
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(sound crossing time < free fall time)

Newton

Test of  modified gravity in Cluster
・Using gas observations
　 (AT & Yamamoto,12,  AT et al,14)

⇢�1
gas

dPgas

dr
= �

✓
d NG

dr
+

d MG

dr

◆

⇢gas Pgas

Tgas = µmpPgas/⇢gas

：gas density ：gas pressure

：gas temperature r
10-2 10-1 100 101 102

10-6

10-4

10-2

100

P
g
a
s(
r)

chameleon gravity

Newton gravity

Figure 29: Surface mass density ΣS(r⊥) (left panel) and the logarithmic slope d lnΣS/d ln r⊥
(right panel) as function of r⊥. The data with the error bar is from Umetsu et al. [77, 78],
while the curves are the theoretical modeling. The (magenta) dot and long-dash curve is the
original Galileon model (µ = 0.26, ϵ = 0.53), but the other curves assume the same value of
ϵ = 0.1 but the different values of µ = 1 (green dashed curve), 0 (black solid curve), and −0.5
(blue dot and short-dashed curve), respectively. Note that µ = 0 is Newtonian gravity. We
here adopted the NFW profile with fixing Mvir = 1.5× 1015M⊙/h and cvir = 7.7.

Figure 30: Same figure as figure 29 but with different theoretical models. The black solid
curve is Newtonian gravity µ = 0, the other curves assume the same value of µ = 1.0 and the
different values of ϵ = 0.1 (green dashed curve), 0.5 (blue dot short-dashed), and 1.0 (magenta
dot long-dashed), respectively. Note that the curves approach Newtonian gravity as ϵ becomes
large. We adopted the same NFW profile as figure 29, Mvir = 1.5× 1015M⊙/h and cvir = 7.7.

92

・Using lensing shear observation 
　(Narikawa & Yamamoto,12)

⌃S ' �1

2

Z �S

0
d�4(2D)(�� )

GR

gGalileon gravity

Surface mass density

Hydrostatic equilibrium

modification

lens potential

Combine 2 methods

Generalized Galileon Model

Observational constraint on the generalized Galileon gravity
model from the combination of gas and shear profiles of cluster

of galaxies.

Ayumu Terukina1, and Kazuhiro Yamamoto1,2

1Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1,
739-8526, Japan

2Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Kagamiyama
1-3-1, 739-8526, Japan

We attempt a test on the generalized Galileon model using observation of cluster of galaxies. The
Viainshtein mechanism in this model may not work at the cluster scale, which gives us a chance
testing the graviy model. The modification of the gravitational potential Ψ and the lens potential
Ψ−Φ yield a deviation of gas profiles in cluster of galaxies and gravitational lens shear profile form
general relativity. These two-type modifications include the different model parameter dependence.

PACS numbers:

I. INTRODUCTION

(modified gravity)
(test of modified gravity)
(previous work)
(cluster observations)

II. GENERALIZED GALILEON GRAVITY MODEL

We consider the generalized Galileon model, which take the following action,

S =

∫
d4x

√
−g
[
G4(φ)R+K(φ, X)−G3(φ, X)!φ+ Lm

]
, (1)

where K(φ, X), G3(φ, X) and G4(φ) are arbitrary functions depend on the scalar field φ and X ≡
−(∂φ)2/2 and Lm is the matter Lagrangian. This model is non-minimal coupling version of the Kinetic
gravity brading mode, and a subclass of the most general second-order scalar-tensor theory with G4X =
G5 = 0, where AB ≡ ∂A/∂B. This model holds the original Galileon model and the Dvali-Gabadaze-
Porrati (DGP) model. In the cosmological background with the metric ds2 = −dt2+a2dx2 with the scale
factor a(t), the gravitational field equations given by

E = ρm, (2)

P = 0, (3)

where

E ≡ 2XKX −K + 6Xφ̇HG3X − 2XG3φ − 6H2G4 − 6Hφ̇Gφ, (4)

P ≡ K − 2X
(
G3φ + φ̈G3X

)
+ 2

(
3H2 + 2Ḣ

)
G4 + 2

(
φ̈+ 2Hφ̇

)
G4φ + 4XG4φφ, (5)

・ Spherical symmetric solution with Viainsthein

・ e.g. DGP model, original Galileon model

　　　⇒ Recovery of  local gravity by Vainsthein mechanism

：functions of                       determined from back groundK,G3, G4

gravitational potential

lens potential

scalar fielddQ̃

dr
=

r

4

 
1�

s

1 +
8G✏2M(< r)

H2
0r

3

!

d

dr

✓
�� 

2

◆
=

GM(< r)

r2
� µL

dQ̃

dr

d 

dr
=

GM(< r)

r2
� µG

dQ̃

dr

M(< r) = 4⇡

Z r

0
dr0r0

2
⇢(r)independent parameter

µG, µL, ✏

Kimura et al. 2012
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Vainsthein mechanism

Vainsthein radius

(Vainsthein mechanism)

rV ⌘ [8G✏2Mvir/H
2
0 ]

1/3

gravitational potential

lens potential

scalar fielddQ̃

dr
=

r

4
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s

1 +
8G✏2M(< r)

H2
0r

3

!

d

dr

✓
�� 

2

◆
=

GM(< r)

r2
� µL

dQ̃

dr

d 

dr
=

GM(< r)

r2
� µG

dQ̃

dr

r ⌧ rV / ✏2/3 r � rV / ✏2/3

d 

dr
' G(1 + µG)M(r)

r2

d

dr

✓
�� 

2

◆
' G(1 + µL)M(r)

r2

d

dr

✓
�� 

2

◆
=

d 

dr
' GM(r)

r2

Newton limit Modified gravity limit

Gas distribution profiles

Hydrostatic equilibrium

Electron number density
（β-model）

Equation of  state

⇢gas =
5µmp

2 + µ
ne

kTgas =
µmpPgas

⇢gasPgas = ⇢gaskTgas/µmp

Assumptions 3D profiles

⇢�1
gas

dPgas

dr
= �d 

dr
Pgas =n0T0 � µmp

Z r

0
ne

d 

dr
dr

Gas pressure

Gas density

Gas temperature

ne(r) = n0

"
1 +

✓
r

rc

◆2
#�

AT et al. 2014

dependence of µG, ✏
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Gas distribution observations

TX(r?) =

R
dz�c(r)n2

e(r)Tgas(r)R
dz�c(r)n2

e(r)
SX(r?) =

Z
dz�c(r)n

2
e(r)

�T (r?)

TCMB
= �2

�T

me

Z
dzPe(r) = �2y(r?)

X-ray surface brightnessX-ray temperature

SZ effect

observations

・Sunyaev-Zel’dovich effect
・X-ray surface brightness
・X-ray temperature

hot plasma

proton

electron

bremsstrahlung

CMB
line emisison

isotropyanisotropy

Lensing shear

6

or introducing µ2 ≡ (α+ 2ξ)/2,

κ(r⊥) ≃
2

Σc

∫ ∞

0
dz

[
ρ(r)− µ2ρc0

2ϵ2

(
1−

√

1 + 12ϵ2
ρs
ρc0

r3s
r3

m(r)

)
(56)

+
ρ(r)− 3ρsr3sm(r)/r3√
1 + 12ϵ2ρsr3sm(r)/ρc0r3

µ2

]
, (57)

in the physical coordinate, where

Σc =
1

4πG

DA(χS)

[DA(χS)−DA(χL)]DA(χL)aL
(58)

and r =
√
r2⊥ + z2.

We define the reduced shear,

g+(r⊥) ≡
γ+(r⊥)

1− κ(r⊥)
, (59)

where γ+(r⊥) is the tangential shear, which is related with the convergence as

γ+(r⊥) = κ̄(< r⊥)− κ(r⊥), (60)

with

κ̄(< r⊥) ≡
2

r2⊥

∫ r⊥

0
dr′⊥r

′
⊥κ(r

′
⊥). (61)

Here we assume that the source galaxies have random orientation of the ellipticity ϵS, the average of
which is ⟨ϵS⟩ = 0. When we observe the tangential ellipticities of the source galaxies ϵobs., this avarage is
represented as ⟨ϵobs.⟩ = g+.

IV. COMPARISON WITH THE MULTI-WAVELENGTH OBSERVATIONS

A. Coma cluster

The Coma cluster is one of the well observed nearby cluster with the redshift z = 0.0231.

B. Analysis

We introduce the total chi-squared by summing chi-squared of each observations,

χ2(Mvir, c, T0, n0, b1, r1, µ1, µ2, ϵ) = χ2
SB + χ2

XT + χ2
SZ + χ2

WL (62)

where

χ2
SB =

∑

i

(TX(r⊥,i)− T obs.
X,i )2

(∆T obs.
X,i )2

, (63)

χ2
XT =

∑

i

(SX(r⊥,i)− Sobs.
X,i )

2

(∆Sobs.
X,i )

2
, (64)

χ2
SZ =

∑

i

(y(r⊥,i)− yobs.i )2

(∆yobs.,i )2
, (65)

χ2
WL =

∑

i

(g+(r⊥,i)− gobs.+,i )
2

(∆gobs.+,i )
2

(66)

6

or introducing µ2 ≡ (α+ 2ξ)/2,

κ(r⊥) ≃
2

Σc

∫ ∞

0
dz

[
ρ(r)− µ2ρc0

2ϵ2

(
1−

√

1 + 12ϵ2
ρs
ρc0

r3s
r3

m(r)

)
(56)

+
ρ(r)− 3ρsr3sm(r)/r3√
1 + 12ϵ2ρsr3sm(r)/ρc0r3

µ2

]
, (57)

in the physical coordinate, where

Σc =
1

4πG

DA(χS)

[DA(χS)−DA(χL)]DA(χL)aL
(58)

and r =
√
r2⊥ + z2.

We define the reduced shear,

g+(r⊥) ≡
γ+(r⊥)

1− κ(r⊥)
, (59)

where γ+(r⊥) is the tangential shear, which is related with the convergence as

γ+(r⊥) = κ̄(< r⊥)− κ(r⊥), (60)

with

κ̄(< r⊥) ≡
2

r2⊥

∫ r⊥

0
dr′⊥r

′
⊥κ(r

′
⊥). (61)

Here we assume that the source galaxies have random orientation of the ellipticity ϵS, the average of
which is ⟨ϵS⟩ = 0. When we observe the tangential ellipticities of the source galaxies ϵobs., this avarage is
represented as ⟨ϵobs.⟩ = g+.

IV. COMPARISON WITH THE MULTI-WAVELENGTH OBSERVATIONS

A. Coma cluster

The Coma cluster is one of the well observed nearby cluster with the redshift z = 0.0231.

B. Analysis

We introduce the total chi-squared by summing chi-squared of each observations,

χ2(Mvir, c, T0, n0, b1, r1, µ1, µ2, ϵ) = χ2
SB + χ2

XT + χ2
SZ + χ2

WL (62)

where

χ2
SB =

∑

i

(TX(r⊥,i)− T obs.
X,i )2

(∆T obs.
X,i )2

, (63)

χ2
XT =

∑

i

(SX(r⊥,i)− Sobs.
X,i )

2

(∆Sobs.
X,i )

2
, (64)

χ2
SZ =

∑

i

(y(r⊥,i)− yobs.i )2

(∆yobs.,i )2
, (65)

χ2
WL =

∑

i

(g+(r⊥,i)− gobs.+,i )
2

(∆gobs.+,i )
2

(66)

・Convergence

・Reduced shear  (observed)

・Tangential shear

 ' �1

2

Z �S

0
d�

(�S � �)�

�S
4(2D)(�� )

g
+

(r?) ⌘
�
+

(r?)

1� (r?)
= h✏obs.

+

i

True background Observed image

銀河団

背景銀河

dependence of µL, ✏

cluster

source galaxies



�454

matter distribution and non-thermal pressure

・NFW profile

⇢(r) =
⇢s

r/rs(1 + r/rs)2

Concentration parameter　　　   Virial mass

・A bias between gas obs. and lensing obs.

Introducing a bias as systematic 
effect from non-thermal effects.

gas infall

cluster

Non-thermal effect from turbulent gas
→　Equilibrium include the non-thermal pressure.

→　A bias in concentration between gas 

       and lens profile  is appeared. (Lau et al., 09)

bc ⌘
cgas
cshear

c ⌘ rvir
rs

, Mvir ⌘ M(< rvir) =

Z rvir

0
drr2⇢(r)
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Comparison with Coma cluster

NFW gas gravity model

�2(Mvir, c, bc, T0, n0,�, rc, µ
0
G, µ

0
L, ✏

0) = �2
XT + �2

SZ + �2
SZ + �2

WL

Data was provided 
by Okabe-san
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Effect of

X-ray temperature

SZ effect

lensing shear 
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the gas distribution 
is changed
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Data was provided 
by Okabe-san

µG = 0.5

✏ = 0.3
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✏ = 0.3

Data was provided 
by Okabe-san
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Preliminary Result

1σ
2σ

：GR

MCMC analysis

＋ ：original Galileon

・2 parameters are constrained at the same time.
・Original Galileon is marginal.

(g
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：sDGP model✕

µG, µL = 0

Rejected

(Vainshtein radius)

µ0
G

µ0
L

✏0 µ0
G

µ0
=

µ

1 + |µ| , ✏0 = 1� exp(�✏)

�1 < µ0 < 1, 0 < ✏0 < 1

Rejected Rejected

Summary

• I have discussed testing gravity theory using cluster’s 
observations of  the gas and shear profiles simultaneously.

• The gas distributions depend on the gravitational potential, 
while the shear profile depends on the lens potential, 
which are complimentary to put a constraint.

• Using the observations of  the gas and shear profiles of  the 
Coma cluster, I put a constraint  on the generalized 
Galileon model. (                     )

• 2 parameters are constrained at the same time.

• The constraint on the original Galileon model is marginal.

µG, µL, ✏
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1

Probing the origin of UHECRs
 with neutrinos

Shigeru Yoshida
Department of Physics

ICEHAP, Chiba University

The recent results from IceCube
 

and its outlook

ν
UHECRs

2

The Neutrino Flux: overview
Solar ν

 
(8B)

SN relic  ν

Atmospheric ν
The main background for astro-ν

“On-source”
 

astro-ν
produced at the UHECR sources

Not established yet

“GZK”
 

cosmogenic
 

ν
produced in the CMB field

Not detected yetEeVPeVTeVGeVMeV
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3

The Cosmic Neutrinos
 Production Mechanisms

“On-source”
 

ν

“GZK”
 

cosmogenic
 

ν EeV

matter

radiation

pp Æ πÆ ν

γpÆ πÆ ν

γpÆ πÆ ν

νphotopion

 

production

CMB
100EeV p

p

p

TeV
 

-
 

PeV

4

The IceCube Neutrino Observatory

2004: Project Start               1 string
2011: Project completion   86 strings

Digital Optical Module (DOM)

Configuration
chronology

2006:  IC9
2007:  IC22
2008:  IC40
2009:  IC59
2010:  IC79
2011:  IC86

Complete
d: De

c 201
0

PMTFull operation with all strings since May 2011
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5

Constructions
 2005-2011

Detectors shipped from Japan

Drill House

Researchers working on deployment
The IceCube Lab 「Beer Can」

6

Topological signatures of 
IceCube

 
events

Down-going track

• atmospheric μ

• secondary produced

μ

 
from νμ

τ

 
from ντ

 

@ >> PeV

Up-going track

• atmospheric νμ
Cascade (Shower)

directly induced by ν
inside the detector volume

• via CC from νe

• via NC from νe

 

, νμ

 

,ντ
all 3 flavor sensitive
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Neutrino SignaturesNeutrino Signatures
 UHE (>100 UHE (>100 PeVPeV) VHE(>100 ) VHE(>100 TeVTeV))

CR

μ

μ

μ
μ,τ

UHE ν
μ,τ

ν e,τ,μ

Background:
Atmospheric muon

VHE

 
νμ

μ

8

Post Bert & Ernie
The Discovery Analyses
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9

TeV PeV EeV

Mid Energy (60 TeV-)
look for only events with their interaction vertices

within the fiducial
 

volume

signal ν

atmospheric ν

atmospheric μ

10

TeV PeV EeV

Mid Energy (60 TeV-)

IceCube

 

collaboration

Phys. Rev. Lett. 113, 101101

2PeV
“Big Bird”

IceCube
 

3 years data (2010-2013)
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11

TeV PeV EeV

Mid Energy (60 TeV-)

Bert

Gal.Center

Big Bird

Ernie

IceCube
 

3 years data (2010-2013)

12

TeV PeV EeV

Mid Energy (10
 

TeV-)

IceCube Preliminary
veto + “cascade”
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TeV PeV EeV

LE (<10 TeV)

Energy-dependent active veto

14

TeV PeV EeV

LE (<10 TeV)

IceCube Preliminary
IceCube

 
2 years data (2010-2012)
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15

TeV PeV EeV

LE (<10 TeV)

IceCube Preliminary
IceCube

 
2 years data (2010-2012)

16

TeV PeV EeV

VHE (100 TeV-PeV)

IceCube Preliminary

The “traditional”
 

νμ
 

search
looking into upgoing

 
tracks

IceCube
 

2 years data (2010-2012)
νμÆ μ

detected as upgoing
 

track

Eν

 

= O(100TeV)

3.9 σ
 

excess 
over the atmospheric BG

(E)~9.6E2 x 10-9φ
[GeV/cm2

 
sec sr]

νμ
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TeV PeV EeV

VHE (100 TeV-PeV)

IceCube Preliminary

The “traditional”
 

νμ
 

search
looking into upgoing

 
tracks

21

UHE (PeV-EeV)
Detection Principle –

 
All flavor

 
sensitive

cos(Zenith)

“E
n

e
rg

y”

down-goingup-going

-1 10

atmospheric μ (bundle) 

atmospheric ν

Signal Domain

TeV PeV EeV
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IceCube2010

IceCube2011

Number of events (z-axis) per the test-sample livetime
test-sample data atmospheric

 
μ atmospheric

 
ν signal

 
GZK ν

conventional only

TeV PeV EeV

UHE (PeV-EeV)

23

The model-independent upper limit on flux

Effective νe+μ+τ

 

detection exposure

6x107

 

m2

 

days sr

 
@ 1EeV

= 0.2 km2 sr

 
year

Note: φCR

 

(>1EeV) ~ 20/km2

 

sr

 
year

ν

 
with CR comparable flux should

have been detected

νe+μ+τ

any model adjacent to the limit
is disfavored by the observation

TeV PeV EeV

UHE (PeV-EeV)

IceCube

 

collaboration
Phys. Rev. D 88, 112008

systematics

 

included

IceCube
 

2 years data (2010-2012)
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TeV PeV EeV

UHE (PeV-EeV)
IceCube

 
6 years data (2008-2014)

 
all combined

IceCube Preliminary

cos(zenith)

N
P

E

N
P

E

N
P

E

N
P

E

N
P

E

N
P

E

cos(zenith)cos(zenith)

Data (10% sample) Background MC GZK signal MC

tr
a

c
k-

lik
e

n
o

n
 t

ra
c

k-
lik

e

νμ,τ

νe,μ,τ

New

25

Veto by arshower
 

array (IceTop)

Photon hits associated with EAS

UHE (PeV-EeV)
TeV PeV EeV

New
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TeV PeV EeV

UHE (PeV-EeV)

νe+μ+τ

IceCube Preliminary

IceCube
 

6 years data (2008-2014) all combined

Model Event Rate
[/(2008-20014)]

Yoshida
(FR-II compat.)

6.5

Ahlers
(Best fit to HiRes)

5.0

Ahlers
(Minimum)

1.1

Kotera
(GRB)

3.9

Kotera
(STF)

2.9

28

TeV PeV EeV

UHE (PeV-EeV)

IceCube Confidential

IceCube
 

6 years data (2008-2014) all combined

Search Results coming soon
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The Cosmic Neutrinos
 Production Mechanisms

“On-source”
 

ν TeV
 

-
 

PeV

“GZK”
 

cosmogenic
 

ν EeV

matter

radiation

pp Æ πÆ ν

γpÆ πÆ ν

γpÆ πÆ ν

νphotopion

 

production

CMB
100EeV p

p

p

30

dJν
dE

~ FGZK CR
Rcosmic

RGZK

τ(E)E-α ζ(z, m, zmax , E)

radiation
p γpÆ πÆ ν

photopion

 

production

ν

optical depth
(<1)

Fixed to the Star Formation Rate

Constraints on the optical depth 
and extra-galactic CR flux

Constrain them by 
the IceCube

 
100TeV-PeV observation
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Constraints on the optical depth 
and extra-galactic CR flux

optical depth must
be > 10-2

~

extra-galactic proton flux
must be > 10-2 of 

the all-particle CR flux
@ 10 PeV

Yoshida, Takami
arXiv:1409.2950

33

Constraints on the optical depth 
and extra-galactic CR flux

Quasars/FR-II
GRBs

 
(internal shock)

BL Lac/FR-I
GRBs

 
(external shock)

strong 
evolution

if they are also 
100EeV CR sources

energetics
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Suppose the PeV
 

ν
 

emitters
are also UHECR (E~100EeV)

sources

TeV PeV EeV

ν

P extending to EeVsF
lu

x

extragalactic

the observed cosmic ray flux

35

Constraints on the optical depth 
and extra-galactic CR flux

• optical depth must
be ~1

• extra-galactic proton flux
must dominate

in the all-particle CR flux
@ 1 EeV(=1000PeV)
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The Cosmic Neutrinos
 Production Mechanisms

“On-source”
 

ν TeV
 

-
 

PeV

“GZK”
 

cosmogenic
 

ν EeV

matter

radiation

pp Æ πÆ ν

γpÆ πÆ ν

γpÆ πÆ ν

νphotopion

 

production

CMB
100EeV p

p

p

38

UHE cosmic ray and GZK ν
 

fluxes

Cosmic Ray flux
(IceTop)

UHE CR flux
(Auger/TA)

allowed range of the

 
ν

 
flux

Ahlers et al, Astropart.Phys. 34 106 (2010)

the ν

 
fluxes from strongly 

evolved and no evolved sources
SY et al, Prog.Theo.Phys. 89 833(1993)

GZK cosmogenic
 

ν’s

Ranges more than an order
of magnitude

why?
EeV 10EeV100PeV
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Tracing history of
 the particle emissions with ν

 
flux

Hopkins and Beacom, Astrophys. J. 651 142 (2006)

Redshift

 

(z)Present Past

color : emission rate of ultra-high energy particles

rare

frequent

ν
Intensity gets higher
if the emission is more
active

 

in the past

because ν

 

beams are
penetrating over 
cosmological distances

Many indications that the past was 
more active.

Star formation rateÆ

ρ(z) ~ (1+z)m

The spectral emission rate

The cosmological evolution

m= 0 : No evolution

41

Ultra-high energy ν
 

intensity
 depends on the emission rate in far-universe

“quiet” “dynamic”
particle emissions in far-universe

in
te

n
si

ty
 a

b
o

ve
 1

 E
e

V
(=

1
0

1
8

e
V

)

more than an order of
magnitude difference

Yoshida and Ishihara, PRD 85, 063002 (2012)

ρ(z) ~ (1+z)m
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GZK cosmogenic
 

ν
 

intensity @ 1EeV
 in the phase space of the emission history

Yoshida and Ishihara, PRD 85, 063002 (2012)

ρ
 

~ (1+z)m

0<z<zmax

GZK ν

 
flux φ = (m, zmax

 

)

x IceCube

 
Exposure

Number of events
we should have detected

We have seen null events

43

AGNs

 
with 

radio-loud jets

ρ(z) ~ (1+z)m

z<Zmax

e
xc

lu
d
e
d

Star Formation

Rate

GRBs

IceCube

 

collaboration

Phys. Rev. D 88, 112008

The solid bound by

the GZK ν

The Constraints on evolution
 (=emission history)

 of UHE cosmic ray sources
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The Constraints on evolution
 (=emission history)

 of UHE cosmic ray sources

The solid bound by

the GZK ν

ρ(z) ~ (1+z)m

z<Zmax

e
x
c

lu
d

e
d

AGNs

 
with 

radio-loud jets
Star Formation

Rate

GRBs

IceCube

 

collaboration

Phys. Rev. D 88, 112008

The region scanned by

IceCube

 
2008-2014

coming soon!

45

The Multi Messengers:
 UHE νÆ γ (or any other messengers)

look up this direction!

ν γ“GFU”
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cascade (non track-like)

trackevent topology separation

new

TeV PeV EeV

UHE (PeV-EeV)
Online Analysis for γ-ray/optical follow-up

χ2
 

for track hypothesis

track-
like non track-like

47

E2φ

 
= 3x10-8GeVm-2sec-1sr-1

νe+μ+τ of

BG: ~ 2-3 event/year

track

Δθ~0.3 deg

TeV PeV EeV

UHE (PeV-EeV)
Online Analysis for γ-ray/optical follow-up

signal background

3.8 event/year

 
for

GZK: ~ 0.3-0.9 event/year

e
n

e
rg

y 
p

ro
xy

cos(zenith) cos(zenith)

We will send you:

• direction
• Energy (proxy)
• rating of signal-likelihood
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Next Generation: IceCube
 

HEX

49

A veto airshower  array
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Next Generation: IceCube
 

HEX
Photo-detector development

Wavelength shifter 
coated tube

A la KM3Net
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Next Generation: IceCube
 

HEX
Photo-detector development

620m
m

Maximal Diameter
Φ284mm

customized glass shape/curvature
• designed best match curvature to   
our PMT
• less thickness top/bottom part 
(9mm-10mm where PMT cceptance) 
for better light transmittance

Slightly enhanced diameter 
and glass thickness in the 
middle for a mechanical 
strength

Two 8’ Hamamatsu R5912 High-QE PMTs
•up/down symmetry: good for veto, reco etc
•two PMTs insead of one: Better saturation response
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Next Generation: IceCube
 

HEX
Photo-detector development

8’

 

high-QE PMT

Glass + PMT assembly

Silicon gel

Lovely ball

55

Next Generation: ARA
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Next Generation: ARA

transmission coefficient

Antenna Assembly and calibration

chamber

57

Next Generation: ARA
“end-to-end”

 
calibration

Expected signals from ice
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Executive Summary

ν = THE smoking gun
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“The simulation of magnetized binary neutron star mergers 

on K” 

Kenta Kiuchi

[JGRG24(2014)111211] 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“Constraining the equation of state of neutron stars from 

binary mergers”  

Kentaro Takami

[JGRG24(2014)111212] 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Introduction Methodology Results Conclusions

Constraining the Equation of State of
Neutron Stars from Binary Mergers

Kentaro Takami

Institute for Theoretical Physics, Goethe University Frankfurt

Collaborators : Luciano Rezzolla and Luca Baiotti

The 24th Workshop on General Relativity and Gravitation,
10-14 November 2014.

Introduction Methodology Results Conclusions

Introduction
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Introduction Methodology Results Conclusions

What is a Binary Neutron Star?

! Flaminio’s and Kiuchi’s talk had nice introductions.

observationally existence (as opposed to binary black
holes)
one of the strongest sources of gravitational waves

central engine of short gamma ray bursts
- the released energies ⇠ 1048�50 erg, which is equivalent to

what released by the whole galaxy over ⇠ 1 year

the GWs will be observed by advanced detectors
(advanced LIGO, advanced VIRGO and KAGRA) within
the next 5 years

- realistic rate ⇠ 40 BNSs inspirals a year, i.e. , ⇠ 1 event a
week (Abadie+2010)

Introduction Methodology Results Conclusions

What is a Binary Neutron Star?

For BBHs, we know what to expect:
BH + BH =) BH + GW

For BNSs, the question is more subtle: the merger leads to
a hyper-massive neutron star (HMNS), i.e. , a metastable
equilibrium:

NS + NS =) HMNS + ? =) BH + torus + ? =) BH

All complications are in the intermediate stages; the
rewards:

- studying the HMNS will show strong and precise imprint on
the EOS

- studying the BH+torus will tell us on the central engine of
GRBs
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What is a Binary Neutron Star?

For BBHs, we know what to expect:
BH + BH =) BH + GW

For BNSs, the question is more subtle: the merger leads to
a hyper-massive neutron star (HMNS), i.e. , a metastable
equilibrium:

NS + NS =) HMNS + ? =) BH + torus + ? =) BH

All complications are in the intermediate stages; the
rewards:

- studying the HMNS will show strong and precise imprint on
the EOS

- studying the BH+torus will tell us on the central engine of
GRBs

Introduction Methodology Results Conclusions

GW from a HMNS

The GW potentially give us
many information, such as
the mass, EOS and so on.

Three clear peaks, f1, f2 and f3.
- f1· · · nonlinear interaction

between quadrupole and
quasiradial modes

- f2· · · fundamental quadrupolar
fluid mode (Stergioulas+2011)
f2· · · simple function of the
average mass density,
independent of the EOS
considered (Bauswein+2012)

- f3· · · larger uncertainty in the
physical interpretation

- using f1 and f2, we have
constructed method to decide the
redshift(Messenger+PRX2014).

- using f1 and f2, we have
developed powerful tool to
constrain EOS(Takami+PRL2014).
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Methodology

Introduction Methodology Results Conclusions

Numerical Method

All of our calculations have been performed in full general relativity.

< spacetime evolution >

McLachlan code which
is a part of publicly avail-
able Einstein Toolkit

(Löffler+2012).
- BSSNOK formalism

(Nakamura+1987, Shibata+1995,
Baumgarte+1998)

- 4th-order finite differencing method

< fluid evolution >

Whisky code which is our
privately developed code
(Baiotti+ 2005).

- finite-volume method

- HLLE approximate Riemann solver

- PPM reconstruction

- 4th-order Runge-Kutta scheme
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Equation of State

“hybrid” equation of state (EOS)
based on a piecewise polytropic (PP) EOS augmented by an
ideal gas:

p = pc + pth , " = "c + "th ,

where

pth = (�th � 1) ⇢ "th : ideal gas ,

pc = Ki ⇢
�i : piecewise polytropic EOS ,

K`+1 = K` ⇢
(�`��`+1)
` : continuity of pressure ,

"c = "i +
Ki

�i � 1
⇢(�i�1) : first law of thermodynamics .

Introduction Methodology Results Conclusions

Equation of State

p

⇢[g/cm3]

⇢2

p2

⇢1 ⇢3

p3

p1

pfid

=

10151014.7

= =

�4

�1 = 1.35692395
K1/c2 = 3.99873692⇥ 10�8

�3

�2

0

crust
core

- we use PP EOSs with 4-piece
regions which are good
approximation of realistic EOS
(Read+2009)

- Observed maximum mass is
2.01 ± 0.04M� for PSR
J0348+0432 (Antoniadis+2013).
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Results

Introduction Methodology Results Conclusions

Dynamics

rest-mass density

movie

e.g.,
- H4 EOS

(relativistic mean-field theory
including effects of hyperons)

- Mtot = 2.600M�

- R ⇡ 9.173M� ⇡ 13.54[km]

- tidal deformability
�/M5 ⇡ 1391
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Dynamics and Waveforms

H4 EOS, 1.3M�. merger
HMNS

Introduction Methodology Results Conclusions

Dynamics and Waveforms

H4 EOS, 1.3M�. merger
HMNS
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Dynamics and Waveforms

H4 EOS, 1.3M�. merger
HMNS

f1 f2

Introduction Methodology Results Conclusions

Correlations of f1 and f2

(M/R3)1/2[(g/cm3)1/2]

f 1
[k

H
z]

6 EOSs, and 5 different
mass models for each
EOS
! 30 models
f1 and f2 are
characterized by the
properties of BNS at
infinite separation
e.g. ,
f1 as a function of
(M/R3)1/2

! no good correlation
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Correlations of f1 and f2

GM/c2R (M/R3)1/2
[(g/cm3)1/2]

f 1
[k

H
z]

f 2
[k

H
z]

f1(low-frequency peak)
- all points can be fitted

by a cubic polynomial
function

- universal behaviour
independently of each
EOS

f2(high-frequency peak)
- no universality
- the points for each EOS

can be fitted by a linear
function

- f1,2 are not very
sensitive to initial mass
ratio (Bauswein+2011,
Hotokezaka+2013)

Introduction Methodology Results Conclusions

Correlations of f1 and f2

GM/c2R (M/R3)1/2
[(g/cm3)1/2]

f 1
[k

H
z]

f 2
[k

H
z]

un
ive

rs
ali

ty!

f1(low-frequency peak)
- all points can be fitted

by a cubic polynomial
function

- universal behaviour
independently of each
EOS

f2(high-frequency peak)
- no universality
- the points for each EOS

can be fitted by a linear
function

- f1,2 are not very
sensitive to initial mass
ratio (Bauswein+2011,
Hotokezaka+2013)
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Constraining the EOS ( e.g., 1 )

sequences of equilibrium
nonrotating models

1. observe GW and extract
f1 and f2

2. construct M(R, f1) and
M(R, f2;EOS) curves

3. only the ALF2 and H4
EOSs have (near)
crossings at one point

4. the uncertainty can be
removed, if the mass of
the binary is known from
the inspiral signal

From only one observation, we can
constrain to ALF2 EOS in this case.
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Constraining the EOS ( e.g., 2 )

sequences of equilibrium
nonrotating models

1. observe GW and extract
f1 and f2

2. construct M(R, f1) and
M(R, f2;EOS) curves

3. only the APR4 and SLy
EOSs have (near)
crossings at one point

4. the uncertainty can be
removed, if the mass of
the binary is known from
the inspiral signal

From only one observation, we can
constrain to APR4 EOS in this
case.
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Conclusions

Introduction Methodology Results Conclusions

Conclusions

- we have carried out a large sample of accurate and fully
general-relativistic simulations of the inspiral and
postmerger of BNSs with nuclear EOSs

- we have confirmed that the GW spectral properties of
HMNSs have clear and distinct two peaks, which are called
f1 and f2

- we have found that f1 peaks exhibit a tight correlation with
the stellar compactness that is essentially
EOS-independent, while a correlation of f2 depend on
EOSs

- we have developed and shown the powerful tool to
constrain the EOS via GWs
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Fragmentation Effects  
in  

Rotating Relativistic Supermassive Stars  
Motoyuk( Sa()o (Waseda Un(vers(ty 

No.
The 24th workshop on General Relativity and Gravitation   

12th November 2014 @ Kavli IPMU, the University of Tokyo, Chiba, Japan2

Our galaxy (Sgr A*) @Chandra

(105M� � 1010M�)

NGC4839 
(McConnel et al. 11)

dwarf Seyfert 1 
(Barth et al. 04)

• Monolithic formation of 
supermassive object

• Mergers of smaller hole or mass
• Accretion of mass onto stars

Exist in the center of most galaxies

1. Introduction 

Formation theory still uncertain

Supermassive Objects
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“Fragmentation”  instability 

• n=3 polytropic EoS
• High degree of differential rotation
• Toroidal configuration
• (off-centered density maximum)
• Large compactness of the star

Fragmentation instability sets in
(Zink et al. 06)

(Resswig et al. 13)

• Possibility of SMBH binary 
formation and merger in the 
early Universe

• Detectable in Decigo/BBO 
• up to z>10 

10 M

T = 0M

10 M

T = 1060M

10 M

T = 1130M

10 M

T = 1440M

10 M

T = 1680M

10 M

T = 2400M

y
[M

]
y
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]

y
[M

]

x [M] x [M]
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12th November 2014 @ Kavli IPMU, the University of Tokyo, Chiba, Japan4

Sheer instability may occur when the degree of differential rotation 
exceeds some critical value
The flow and the turbulence of the 
fluid has a resonance interaction at 
the corotation radius

Turbulence excites and 
absorbs by the resonance 
interaction

Central angular velocity

Surface angular velocity

(Watts, Andersson, Jones 05)

Corotation radius plays a key role to trigger low T/W instability
(investigation of canonical angular momentum)

(MS, Yoshida 06)

Corotation resonance

degree of differential rotation
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Advantages

• Satisfactory approximation when gravitation is not so strong (includes 1PN 
gravity)
• Stable for arbitrary long time, in principle
• Retains all the nonlinear terms necessary to maintain exact dynamics for a 

spherical star
Disadvantages

• Dangerous to treat strong gravitation regime
• Difficult to follow BH growth and formation  

(Although Kerr spacetime does not satisfy conformally flat condition,  it is quite 
well approximated for few percent up to a/M~0.9 )

5

Conformally flat metric with fully relativistic hydrodynamical equations
High resolution shock capturing scheme (HLLE) for shock treatment

Conformally Flat Spacetime

Elliptic equations to solve gravitational field equations
(no need to solve evolution equations)

: lapse function : shift vector : conformal factor

2. Relativistic Hydrodynamics in Conformally Flat Spacetime 

No.
The 24th workshop on General Relativity and Gravitation   

12th November 2014 @ Kavli IPMU, the University of Tokyo, Chiba, Japan6

5. Fragmentation Effects in Supermassive Stars

• Radially unstable
• Existence of coronation radius

High compactness of the star
High degree of differential rotation

Model rp/re T/W J/M2 M/R
I 0.25 0.214 1.65 0.0305
II 0.25 0.214 1.40 0.0428
III 0.25 0.215 1.25 0.0535
IV 0.25 0.215 1.16 0.0627
V 0.25 0.215 1.09 0.0705

• n=3 polytropic equation of state  
(supermassive star sequence)

• High degree of differential rotation

- 60 - 40 - 20 0 20 40 60
0
5
10
15
20
25
30

x /M

z
/M

Requirements for equilibrium stars

Equilibrium stars
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7

Unstable

Stable

Diagnostics has an 
exponential growth 
throughout the evolution

Diagnostics remains 
oscillation around the 
equilibrium

central density
• Analytical criterion of the radial instability in differentially rotating 

stars is unknown
Evolution is necessary to determine the radial stability of the star  
Perturbation: m=0 (pressure deplete), m=2 (rest mass density)

Evolution
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density snapshots in the equatorial plane
Model II

binary formation

dynamical bar formation
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Evolution

Unstable

Stable

Diagnostics has an 
exponential growth 
throughout the evolution

Diagnostics remains 
oscillation around the 
equilibrium

Diagnostics for m=2
Diagnostics

density weighted 
average

No.
The 24th workshop on General Relativity and Gravitation   

12th November 2014 @ Kavli IPMU, the University of Tokyo, Chiba, Japan

0 500 1000 1500 2000

t / M
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

r 
h + / 

M

10

Gravitational Waveform
Quadrupole formula (observer along the rotation axes)

Characteristic frequency and amplitude

Promising source for eLISA!
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5. Summary

• We recovered the fragmentation effect in 
supermassive star sequences

• We find an indication that coronation resonance plays 
a key role in fragmentation, in addition to bar 
formation

• Rotating supermassive star collapse is a promising 
source of burst and quasi-periodic gravitational waves

• Proper diagnostic such as canonical angular 
momentum is necessary for further investigation

11

We investigate the fragmentation effect of a rotating 
supermassive star by means of three dimensional 
hydrodynamical simulations in conformally flat, relativistic 
gravitation
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Lensing magnification

Lens plane: x ∈ L = R2,
source plane: y ∈ S = R2.
Lens model in L:
surface mass density κ(x),
deflection potential Ψ(x),
with ∆Ψ(x) = 2κ(x).

Standard quasi-Newtonian impulse
(‘thin lens’) approximation:

Lensing map: η : L → S ,
Lens equation: y = x−∇Ψ(x).

Given the flux F with and F0 without
the lens, the magnification of a lensed
image at xi is

µ(xi ) = µi =
F

F0
=

1

| det Jac η(xi )|
.

Lensing magnification

• µ has interesting geometrical properties, e.g. invariant sums

∑

i

piµi = const., pi = ±1 (image parity),

apparently related to topological invariants via Lefschetz fixed
point theory. Cf. Werner, Journal of Mathematical Physics (2009).

• µ is not directly observable for resolved strong lensing systems
in general: image positions, time delays, fluxes are observable.



�531

 

Strongly lensed supernova

Recent discovery at Kavli IPMU:

• first direct measurement of
gravitational magnification,

• first strongly lensed supernova
of type Ia

Transient PS1-10afx:

• at z ≃ 1.39 with µ ≃ 30, i.e.
∆m(λ, t) = const. ≃ −3.7mag,

• lensed images unresolved,

• foreground galaxy lens at z ≃ 1.12.

Quimby, Werner, Oguri, et al., Astrophysical Journal Letters (2013);
Quimby, Oguri, More, et al., Science (2014).

Implications for cosmology

• More instances of strongly lensed type Ia supernovae to be
found in upcoming surveys.
⇒ direct measurements of µ become more common

• Powerful new constraints for modelling lenses, especially with
resolved images.
⇒ new tests of cosmology (even gravity?), since

time delay between images ∆t(M,H), and
magnification of images µ(M,H) depend differently on
lens mass M and Hubble parameter H.

• How can the standard definition of µ be extended to
spacetime?
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Magnification in spacetime

Given a luminosity L(x̄) at the emission event x̄ and a flux F (x)
observed at the event x , the luminosity distance D(x̄ , x) is

D(x̄ , x) =

√

L(x̄)

4πF (x)
.

If the flux comparison with a lensless spacetime is meaningful, a
possible extension of µ to spacetime is

µ(x̄ , x) =
F (x)

F0(x)
=

D2
0 (x̄ , x)

D2(x̄ , x)
. (1)

Cf. Schneider, Ehlers and Falco (1992), eq. 4.81.

How to evaluate this? What is its geometrical meaning?

World function

In a spacetime (M, g) with ds2 = gµνdx
µdxν , consider geodesics γ

from x̄ to x , with geodesic length

σγ(x̄ , x) =

∫

γ
ds.

In a normal convex neighbourhood of M, there is a unique geodesic
from x̄ to x , and the world function is the scalar defined as

Ω(x̄ , x) =
1

2
σ2
γ(x̄ , x).

Obviously, Ω(x̄ , x) = 0 for null geodesics.
E.g. Poisson, Pound & Vega, Living Reviews (2011); Synge (1960).
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van Vleck determinant

Comparing neighbouring γ, γ′,

H(x̄ , x) = det

[

∂2Ω(x̄ , x)

∂x̄µxν

]

is non-zero for null geodesics.

Hence, construct a scalar
measuring geodesic flow focusing,

∆(x̄ , x) =
H(x̄ , x)

√

det g(x̄) det g(x)
,

called the van Vleck determinant.
E.g. Visser, Physical Review D (1993).

Evaluated in a normal chart
(centered at x̄),

∆(x̄ , x) =

√

det g(x̄)

det g(x)
. (2)

Application to lensing

In any normal convex neighbourhood of M, using a normal chart
(centered at x̄) and proper time τ̄ of the emitting source, the
luminosity distance is

D(x̄ , x) = −
∂Ω(x̄ , x)

∂τ̄

(

g(x)

g(x̄)

)
1
4

. (3)

Cf. Etherington, Philosophical Magazine (1933), eq. 18.

Hence, using (1), (2) and (3), our spacetime lensing magnification
becomes

µ(x̄ , x) =

(

∂Ω0
∂τ̄
∂Ω
∂τ̄

)2
∆

∆0
. (4)

This is again a scalar, applicable to any normal convex
neighbourhood and any chart.
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Concluding remarks

• Eq. (4) extends the standard gravitational lensing
magnification to a spacetime scalar depending on the van
Vleck determinant.

• Can the comparison of fluxes with a hypothetical ‘lensless
spacetime’ be made more precise mathematically?

• How can this definition be extended beyond convex normal
neighbourhoods?
⇒ important for the case of multiple lensed images

• Are there extensions of magnification invariants from the
standard approximation to a spacetime setting?

This is ongoing work with Amir Babak Aazami, Kavli IPMU.
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But...

This metric can only treat 
“weak field”.
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!
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Is it General ??
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n = 1 Schwarzschild space-time
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⇣ dr

d�

⌘2
= r4G(r, b)

2

ture of the null geodesic near the photon sphere. Thus,
the investigation of gravitational lensing effects of the
all-dimensional black hole in the strong field limit would
give us a new perspective on the intrinsic property of the
all-dimensional black hole.
This paper is organized as follows. In Sec. II, we review

the null geodesic of the Tangherlini solution and investi-
gate the deflection angle of light rays. In Secs. III and
IV, we will investigate the deflection angle of the light
in the weak field approximation and in the strong field
limit, respectively. In Sec. V, we study the gravitational
lens effects in the strong field limit in the Tangherlini
spacetime. In Sec. VI, we conclude our results. In this
paper we use the units in which the light speed c = 1 and
Newton’s constant G = 1.

II. DEFLECTION ANGLE OF LIGHT IN
TANGHERLINI SPACETIME

In this section, we briefly review the null geodesic in
the Tangherlini spacetime and investigate the deflection
angle of light rays. The Tangherlini solution is given by
[47]

ds2 = −
[

1−
(rg
r

)d−3
]

dt2

+
dr2

1−
( rg

r

)d−3
+ r2dσ2

d−2, (2.1)

where rg is the event horizon radius and dσ2
d−2 is

dσ2
d−2 = dθ21 +

d−3
∑

j=2

j−1
∏

i=1

sin2 θidθ
2
j +

d−3
∏

i=1

sin2 θidφ
2(2.2)

with the angular coordinates θi ∈ [0,π] and φ ∈ [0, 2π]
and the integer i runs from 1 into d−3. The event horizon
exists at r = rg, where rg is given by

rg =
16πM

(d− 2)Ad−2
, (2.3)

where M is the black hole mass and Ad−2 is the area of
the unit sphere which is given by

Ad−2 =
2π

d−1
2

Γ
(

d−1
2

) . (2.4)

For stationarity and axial symmetry, there exist the
Killing vectors tµ∂µ = ∂t and φµ∂µ = ∂φ, respectively.
Without loss of generality, we set sin θi = 1 and con-

sider the induced line element

ds2 = −
[

1−
(rg
r

)n]

dt2 +
dr2

1−
( rg

r

)n + r2dφ2,(2.5)

where n ≡ d−3. From kµkµ = 0, where kµ is the photon
wave number, the equation of the photon trajectory is
obtained as

(

dr

dφ

)2

= r4G(r, b), (2.6)

where

G(r, b) ≡
1

b2
−

1

r2
+

rng
rn+2

(2.7)

and b ≡ L/E is the impact parameter of the photon and
E ≡ −gµνtµkν , and L ≡ gµνφµkν are the energy and
the angular momentum of the photon, respectively. We
assume that the conserved energy E is positive. We can
assume L > 0 or b > 0 without loss of generality.
The equation G(r, b) = 0 has two positive solutions

r = r− and r0 for b > bc, one positive solution r = r− =
r0 for b = bc and no positive solution for b < bc, where

bc ≡
(

n+ 2

n

)
1
2
(

n+ 2

2

)
1
n

rg (2.8)

is the critical impact parameter. From Eqs. (2.6) and
(2.7), we find that the photon is scattered if b > bc while
it reaches the event horizon r = rg if b < bc.
We will assume bc < b in what follows since we are

interested in the scattering problem. Here we define r0
as the larger solution of the equation G(r, b) = 0 i.e.
0 < r− ≤ r0. Thus, r0 is the closest distance of a pho-
ton. From G(r0, b) = 0, the relation between the impact
parameter b and the closest distance r0 is given by

1

b2
=

1

r20

[

1−
(

rg
r0

)n]

. (2.9)

The derivative of G(r, b) with respect to r is given by

∂G(r, b)

∂r
=

2

r3
− (n+ 2)

rng
rn+3

. (2.10)

Thus, the radius of the photon sphere which satisfies
∂G(rm, b)/∂r = 0 is obtained as

rm =

(

n+ 2

2

)
1
n

rg. (2.11)

The deflection angle α is given by

α = I(b)− π, (2.12)

where

I(b) ≡ 2

∫ ∞

r0

dr

r2
√

G(r, b)
. (2.13)

III. DEFLECTION ANGLE IN WEAK FIELD
APPROXIMATION

In this section, we will calculate the deflection angle
in the Tangherlini spacetime in weak field approximation
by Keeton and Petters’s method [51]. We define a small
amount h by

h ≡
(

rg
r0

)n

≪
(

rg
rm

)n

=
2

n+ 2
, (3.1)
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Weak field approximation

3

We will assume bc < b in what follows since we are
interested in the scattering problem. In this case, the
larger positive solution r0 of the equation G(r, b) = 0 is
the closest distance of the photon. From G(r0, b) = 0, the
relation between the impact parameter b and the closest
distance r0 is given by

1

b2
=

1

r20

[

1−
(

rg
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)n]

. (2.9)

The derivative of G(r, b) with respect to r is given by
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rng
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. (2.10)

From ∂G(r, b)/∂r = 0, the radius of the photon sphere
rm is obtained as
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2

)
1
n

rg. (2.11)
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α = I(b)− π, (2.12)

where
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G(r, b)
. (2.13)

III. DEFLECTION ANGLE OF LIGHT IN
WEAK FIELD APPROXIMATION

In this section, we will calculate the deflection angle
in the Tangherlini spacetime in weak field approximation
by Keeton and Petters’ method [62]. Under the weak
field approximation, the closest distance r0 is much big-
ger than the radius of the photon sphere rm. We intro-
duce a small parameter h which is defined by

h ≡
(

rg
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≪
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rg
rm

)n

=
2

n+ 2
. (3.1)

The relation between the impact parameter b and the
closest distance r0 (2.9) is expressed by

(r0
b

)2
= 1− h. (3.2)

Thus, the small amount h is expressed by

h =
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b
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+O(h2). (3.3)

Using x ≡ r0/r, the deflection angle α is rewritten as
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dx
√
1− x2
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1− hf(x)
− π, (3.4)

where

f(x) ≡
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1− x2
=

1 + x+ x2 + · · ·+ xn+1

1 + x
. (3.5)

The function f(x) is monotonically increasing with re-
spect to x and changes from 1 to (n+2)/2 as x increases
from 0 to 1. Note that hf(x) is much smaller than the
unity since hf(x) ≪ (rg/rm)n f(1) = 1.

The Taylor series of (1 − hf(x))−
1
2 with respect to

hf(x) is obtained as

(1− hf(x))−
1
2 = 1 +
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hf(x) +O(h2). (3.6)

Therefore, the deflection angle is given by
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We can easily integrate the first term as
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Thus, the deflection angle is rewritten as
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where
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where k ≡ arcsinx and m is a positive integer.
A recurrence formula is obtained as
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=
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=
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When n is even, we can put n = 2L, where L is a
positive integer. From H2 = π/2 and Eqs. (3.11) and
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When n is odd, we can put n = 2L− 1. From H1 = 1
and Eqs. (3.11) and (3.12), we get

Hn+2 = H1 +
L
∑

m=1

B2m−1 = 1 +
L
∑

m=1

(2m− 2)!!

(2m− 1)!!
. (3.15)

Here we have defined 0!! = 1. Thus, the deflection angle
is given by

α =

[

1 +
L
∑

m=1

(2m− 2)!!

(2m− 1)!!

]

(rg
b

)n
+O

(

(rg
b

)2n
)

.

(3.16)
We can also calculate the deflection angle by the non-

linear terms with respect to h by Keeton and Petters’
method [62]. Our purpose in this paper is to research
the relativistic images by exotic lens objects and the ef-
fect on the total magnification. Note that the first order
term with respect to h in the weak gravitational field is
enough for reaching our purpose.

IV. DEFLECTION ANGLE IN STRONG FIELD
LIMIT

In this section, we will investigate the deflection angle
in the Tangherlini spacetime in the strong field limit. We
will express the deflection angle α in the strong field limit
by

α(b) = −ā log

(

b

bc
− 1

)

+ b̄+O
(

(b − bc)
1
2

)

, (4.1)

or

α(θ) = −ā log

(

θDl

bc
− 1

)

+ b̄+O
(

(θDl − bc)
1
2

)

,(4.2)

where ā is a positive parameter, b̄ is a parameter, θ is
the image angle and Dl is the angular diameter distance
between the observer and the lens object. For a small
image angle θ ≪ 1, the impact parameter b is given by [1]

b = θDl. (4.3)

If we get the explicit expression for the deflection angle
in the strong field limit, we can calculate a countably
infinite number of relativistic image angles denoted by
θN and the corresponding magnifications µN individu-
ally [49].
We show the explicit expression for the divergent part

of the deflection angle in the all-dimensional Tangherlini
spacetime and we integrate the regular part of the deflec-
tion angle in 4, 5 and 7 dimension.1 Using by Eq. (2.9)
and

z ≡ 1−
(r0
r

)n
, (4.4)

1 As below, we obey the convention of the analysis in the strong
field limit but the definitions of some symbols such as z are dif-
ferent from the definitions by Bozza [49].

we rewrite G(r, b) and I(b) into

G(z, r0) =
1

r20

{

1−
(

rg
r0

)n

+(1− z)
2
n

[

−1 +

(

rg
r0

)n

(1− z)

]}

(4.5)

and

I(r0) =

∫ 1

0
R(z)f(z, r0)dz, (4.6)

respectively, where

R(z) ≡
2

n
(1− z)

1
n
−1 (4.7)

and

f(z, r0) ≡
1

√

r20G(z, r0)

=
1

√

1−
(

rg
r0

)n
+ (1− z)

2
n

[

−1 +
(

rg
r0

)n
(1 − z)

]

.

(4.8)

We expand r20G(z, r0) near z = 0 and obtain

r20G(z, r0) = γ(r0)z + β(r0)z
2 + · · · , (4.9)

where

γ(r0) ≡
1

n

[

2− (n+ 2)

(

rg
r0

)n]

(4.10)

β(r0) ≡
1

n2

[

n− 2 + (n+ 2)

(

rg
r0

)n]

. (4.11)

Near the photon sphere r0 = rm, γ(r0) and β(r0) are
expanded as

γ(r0) =
2

rm
(r0 − rm) +O

(

(r0 − rm)2
)

(4.12)

and

β(r0) =
1

n
−

2

nrm
(r0 − rm) +O

(

(r0 − rm)2
)

.(4.13)

We will divide I(r0) into the divergent part ID(r0) and
the regular part IR(r0) as

I(r0) = ID(r0) + IR(r0). (4.14)

The divergent part ID(r0) is defined as

ID(r0) ≡
∫ 1

0
R(0)f0(z, r0)dz, (4.15)

where

f0(z, r0) ≡
1

√

γ(r0)z + β(r0)z2
. (4.16)
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We can also calculate the deflection angle by the non-

linear terms with respect to h by Keeton and Petters’
method [62]. Our purpose in this paper is to research
the relativistic images by exotic lens objects and the ef-
fect on the total magnification. Note that the first order
term with respect to h in the weak gravitational field is
enough for reaching our purpose.

IV. DEFLECTION ANGLE IN STRONG FIELD
LIMIT

In this section, we will investigate the deflection angle
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by
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where ā is a positive parameter, b̄ is a parameter, θ is
the image angle and Dl is the angular diameter distance
between the observer and the lens object. For a small
image angle θ ≪ 1, the impact parameter b is given by [1]

b = θDl. (4.3)

If we get the explicit expression for the deflection angle
in the strong field limit, we can calculate a countably
infinite number of relativistic image angles denoted by
θN and the corresponding magnifications µN individu-
ally [49].
We show the explicit expression for the divergent part

of the deflection angle in the all-dimensional Tangherlini
spacetime and we integrate the regular part of the deflec-
tion angle in 4, 5 and 7 dimension.1 Using by Eq. (2.9)
and

z ≡ 1−
(r0
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, (4.4)

1 As below, we obey the convention of the analysis in the strong
field limit but the definitions of some symbols such as z are dif-
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(4.8)

We expand r20G(z, r0) near z = 0 and obtain

r20G(z, r0) = γ(r0)z + β(r0)z
2 + · · · , (4.9)

where

γ(r0) ≡
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Near the photon sphere r0 = rm, γ(r0) and β(r0) are
expanded as

γ(r0) =
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and

β(r0) =
1

n
−

2

nrm
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(
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)
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We will divide I(r0) into the divergent part ID(r0) and
the regular part IR(r0) as

I(r0) = ID(r0) + IR(r0). (4.14)

The divergent part ID(r0) is defined as

ID(r0) ≡
∫ 1

0
R(0)f0(z, r0)dz, (4.15)

where

f0(z, r0) ≡
1
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γ(r0)z + β(r0)z2
. (4.16)

I(r0) = ID(r0) + IR(r0)

ID(r0) : divergent part IR(r0) = I(r0)� ID(r0)

V. Bozza (2002)for n = 1



�545

4

If we get the explicit expression for the deflection angle
in the strong field limit, we can calculate a countably
infinite number of relativistic images angle θN and the
countably infinite magnifications µN individually [40].
We show the explicit expression for the divergent part

of the deflection angle in the all-dimensional Tangherlini
spacetime or the parameter ā and we integrate the regu-
lar part of the deflection angle in 4, 5 and 7 dimension.1

Using by Eqs. (2.9) and

z ≡ 1−
(r0
r

)n

, (4.4)

we rewrite G(r, b) and I(b) into G(z, r0) and I(r0), re-
spectively, as follow:

G(z, r0) =
1

r20

{

1−
(

rg
r0

)n

+(1− z)
2
n

[

−1 +

(

rg
r0

)n

(1− z)

]}

.(4.5)

I(r0) =

∫ 1

0
R(z)f(z, r0)dz, (4.6)

where

R(z) ≡
2

n
(1− z)

1
n
−1 (4.7)

and

f(z, r0) ≡
1

√

r20G(z, r0)

=
1

√

1−
(

rg
r0

)n

+ (1− z)
2
n

[

−1 +
(

rg
r0

)n

(1− z)
]

.

(4.8)

We can expand r20G(z, r0) near the z = 0 and obtain

r20G(z, r0) = γ(r0)z + β(r0)z
2 + · · · , (4.9)

where

γ(r0) ≡
1

n

[

2− (n+ 2)

(

rg
r0

)n]

(4.10)

β(r0) ≡
1

n2

[

n− 2 + (n+ 2)

(

rg
r0

)n]

. (4.11)

Near the photon sphere r0 = rm, γ(r0) and β(r0) are
expanded in a series,

γ(r0) =
2

rm
(r0 − rm) + O

(

(r0 − rm)2
)

(4.12)

1 As below, we obey the convention of the analysis in the strong
field limit but the definitions of some symbols such as z are dif-
ferent from the definitions by Bozza [40].

and

β(r0) =
1

n
−

2

nrm
(r0 − rm) +O

(

(r0 − rm)2
)

,(4.13)

respectively.
We will divide I(r0) into the divergent part ID(r0) and

the regular part IR(r0) or

I(r0) = ID(r0) + IR(r0). (4.14)

The divergent part ID(r0) is defined by

ID(r0) ≡
∫ 1

0
R(0)f0(z, r0)dz, (4.15)

where

f0(z, r0) ≡
1

√

γ(r0)z + β(r0)z2
. (4.16)

The divergent part ID(r0) is calculated in a simple and
straightforward way,

ID(r0)

=
2

n
√

β(r0)
log

∣

∣

∣

∣

∣

γ(r0) + 2β(r0) + 2
√

(γ(r0) + β(r0))β(r0)

γ(r0)

∣

∣

∣

∣

∣

=
4

n
√

β(r0)
log

(

√

β(r0) +
√

γ(r0) + β(r0)
√

γ(r0)

)

. (4.17)

Therefore, the divergent part ID(r0) in the strong field
limit is obtained by

ID(r0) = −
2√
n
log

(

r0
rm

− 1

)

+
2√
n
log

2

n
+O(r0 − rm).

(4.18)

We will rewrite the divergent part ID(r0) into a function
ID(b) with respect to the impact parameter b since the
lens equation is usually written as an equation in terms
of the impact parameter b or the image angle θ. From the
relation between the impact parameter b and the closet
distance r0 (2.9), we can regard the impact parameter
b(r0) as a function with respect to the closet distance r0,
we expand the impact parameter b(r0) in a series near
r0 = rm and we get

b(r0) = bc +
1

2

(

n+ 2

n

)
3
2 n

rm
(r0 − rm)2

+O
(

(r0 − rm)3
)

. (4.19)

From Eqs. (2.8), (2.11) and (4.19) we obtain

log

(

r0
rm

− 1

)

=
1

2
log

(

b

bc
− 1

)

+
1

2
log

(

2

n+ 2

)

+O(r0 − rm). (4.20)

Hence, the divergent part is

ID(b) = −
1√
n
log

(

b

bc
− 1

)

+
1√
n
log

2(n+ 2)

n2

+O
(

(b− bc)
1
2

)

. (4.21)
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The regular part IR(r0) is defined by

IR(r0) ≡
∫ 1

0
g(z, r0)dz, (4.22)

where

g(z, r0) ≡ R(z)f(z, r0)−R(0)f0(z, r0). (4.23)

We can expand IR(r0) in powers of (r0−rm) and express
it as a function IR(b) with respect to b as follow:

IR(r0) =
∞
∑

l=0

1

l!
(r0 − rm)l

∫ 1

0

∂lg

∂rl0

∣

∣

∣

∣

r0=rm

dz

=
2

n

∫ 1

0

⎡

⎣

√
n+ 2(1− z)

1
n
−1

√

n− (1− z)
2
n (n+ 2z)

−
√
n

z

⎤

⎦ dz

+O(r0 − rm)

= 2
√
n+ 2

∫ 1

0

dy
√

n− (n+ 2)y2 + 2yn+2

−
2
√
n

n

∫ 1

0

dz

z
+O

(
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where we have used y ≡ (1− z)
1
n .

Thus, the deflection angle α(b) of the light on the
Tangherlini spacetime in the strong field limit is obtained
as

α(b) = ID(b) + IR(b)− π

= −
1√
n
log

(

b

bc
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)

+
1√
n
log

2(n+ 2)
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+IR(b)− π +O
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(b− bc)
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2

)

. (4.25)

Hence, we get the parameters ā = 1√
n

and b̄ =
1√
n
log 2(n+2)

n2 + IR(b)− π.

We can analytically calculate the regular parts IR(b)
for n = 1, 2 and 4 since the elliptic functions I(b) for
n = 1, 2 and 4 are integrable [33].

A. n = 1

We consider the case for n = 1. In this case, the critical
impact parameter and the radius of the photon sphere

are given by bc =
3
√
3rg
2 and rm = 3rg

2 , respectively. The
divergent part is obtained as
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.(4.26)

The regular part IR(b) is given by
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Thus, the deflection angle α(b) of the light is obtained as

α(b) = ID(b) + IR(b)− π
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Therefore, we get the parameters ā = 1 and b̄ =
log
[
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7− 4
√
3
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− π ≃ −0.40. It recovers the de-
flection angle of the light in Schwarzschild spacetime in
the strong field limit which was obtained by Bozza [40].

B. n = 2

For n = 2. the critical impact parameter and the ra-
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The regular part is obtained as
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Thus, we obtain the deflection angle α(b) in the strong
field limit for n = 2;
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In this case, the parameters are given by ā = 1√
2
and

b̄ = 5
√
2

2 log 2− π ∼ −0.69.

C. n = 4

For n = 4, the critical impact parameter and the radius
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The regular part IR(b) is given by
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Strong field limit 

bc = critical impact parameter
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By a straightforward calculation, the divergent part
ID(r0) is obtained as
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Therefore, the divergent part ID(r0) is expressed by

ID(r0) = −
2√
n
log

(

r0
rm

− 1

)

+
2√
n
log

2

n
+O(r0 − rm).

(4.18)

We will rewrite the divergent part ID(r0) into a func-
tion ID(b) with respect to the impact parameter b since
the lens equation is usually written as an equation in
terms of the impact parameter b or the image angle θ.
From the relation between the impact parameter b and
the closest distance r0 (2.9), we can regard the impact
parameter b(r0) as a function of the closest distance r0.
Using by Eq. (2.9), we expand the impact parameter b(r0)
in a series near r0 = rm to get
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From Eqs. (2.8), (2.11) and (4.19), we obtain
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The regular part IR(r0) is defined as

IR(r0) ≡
∫ 1

0
g(z, r0)dz, (4.22)

where

g(z, r0) ≡ R(z)f(z, r0)−R(0)f0(z, r0). (4.23)

We expand IR(r0) in powers of (r0−rm) and express it as
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where we have used y ≡ (1 − z)
1
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Thus, the deflection angle α(b) in the strong field limit
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Hence, we get the parameters ā = 1√
n

and b̄ =
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n
log 2(n+2)

n2 + IR(b)− π.

We can analytically calculate the regular parts IR(b)
for n = 1, 2 and 4 since the elliptic functions I(b) for
n = 1, 2 and 4 are integrable [40].

A. n = 1

We consider the case for n = 1. In this case, the critical
impact parameter and the radius of the photon sphere

are given by bc =
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2 , respectively. The
divergent part and the regular part of the deflection angle
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respectively. Thus, the deflection angle α(b) is obtained
as

α(b) = ID(b) + IR(b)− π
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Recent Works of Three-body Systems

• ``A millisecond pulsar
   in stellar triple system’’ 
   [Ranson et al., Nature (2014)]

• GW & three-body interactions  
[Wen, ApJ (2003); Seto, PRL (2013)]

• PN triangular solution
[KY & Asada, PRD (2012)]

expected values and error estimates directly from the parameter pos-
terior distributions. We plot the results in Fig. 1 and list best-fit para-
meters and several derived quantities in Table 1. Component masses
and relative inclinations are determined at the 0.1%–0.01% level,
which is one to two orders of magnitude more precisely than from
other MSP timing experiments, by a method that is effectively inde-
pendent of the gravitational theory used. A detailed description of the
three-body model and fitting procedure is under way (A.M.A. et al.,
manuscript in preparation).

Using an early radio position, we identified an object with unusually
blue colours in the Sloan Digital Sky Survey16 (SDSS; Fig. 3). The optical
and archival ultraviolet photometry, combined with new near- and mid-
infrared photometry, are consistent (Methods) with a single white dwarf
of temperature ,15,000 K, which optical spectroscopy confirmed is the
inner white dwarf in the system (D.L.K. et al., manuscript in prepara-
tion). When combined with the known white dwarf mass from timing
observations, white dwarf models provide a radius from which we infer
a photometric distance to the system of 1,300 6 80 pc. The photometry
and timing masses also exclude the possibility that the outer companion
is a main-sequence star.

The pulsar in this system seems to be a typical radio MSP, but it is
unique in having two white dwarf companions in hierarchical orbits.
Although more than 300 MSPs are known in the Galaxy and in globu-
lar clusters, J033711715 is the first MSP stellar triple system found.
Because there are no significant observational selection effects discrim-
inating against the discovery of pulsar triple (as opposed to binary)
systems, this implies that=1% of the MSP population resides in stellar
triples and that =100 such systems exist in the Galaxy.

Predictions for the population of MSP stellar triples have suggested
that most have highly eccentric outer orbits owing to dynamical inter-
actions between the stars during stellar evolution17. Such models could
also produce eccentric binaries such as MSP J190310327 (ref. 18), if
the inner white dwarf, which had previously recycled the pulsar (that is,
turned it into an MSP through the transfer of matter and angular
momentum), were destroyed or ejected from the system dynamically19.
In such situations, however, the coplanarity and circularity of the orbits
of J033711715 would be very surprising. Those orbital characteristics,
and their highly hierarchical nature (Pb,O/Pb,I < 200, where Pb,O and
Pb,I are the orbital periods for the outer and inner binaries, respect-
ively), imply that the current configuration is stable on long time-
scales20, greatly increasing the odds of observing a triple system such
as J033711715. Secular changes to the various orbital parameters will
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Figure 2 | Geometry of the PSR J033711715 system at the reference epoch.
a, Orbital shape and velocity of the outer white dwarf (red), and the orbital
shape and velocity of the centre of mass of the inner binary (grey). b, Orbital
shapes and velocities of the inner white dwarf (orange) and the pulsar (blue).
Dotted red and orange lines indicate the directions of periastron for the inner

and outer white dwarf orbits, respectively. The white dwarf positions when the
pulsar or inner orbit centre of mass crosses the ascending nodes are indicated.
Vertical lines show length scales in the system in astronomical units (AU; a) or
the Earth–Moon distance (dEM) and the Solar radius (R[; b). c, Inclination of
the basically coplanar orbits with respect to the Earth–pulsar direction.
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Figure 1 | Timing residuals and delays from the PSR J033711715 system.
a, b, Geometric light-travel time delays (that is, Rømer delays), in both time and
pulse periods, across the inner (a) and outer (b) orbits, and modified Julian
dates (MJD) of radio timing observations from the GBT, the WSRT and the
Arecibo telescope. Arrival time errors in these panels are approximately a
million times too small to see. c, Newtonian three-body perturbations
compared with the modified two-Keplerian-orbit model used for folding our
data at the observed pulse period. d, Post-fit timing residuals from our full
Markov chain Monte Carlo (MCMC)-derived three-body timing solution
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follows that ! ¼ ffiffiffiffiffiffiffi
a1"

p
, #0 ¼ l2=l1½M2a2=M1ð1$ e22Þ&

1=2,
and $0 is related to #0 and a1" through the trigonometric
relation:

cos I ¼
$2
0 $ #2

0 $ a1"

2#0
ffiffiffiffiffiffiffi
a1"

p : ð2Þ

As we shall see, during the binary’s Kozai mechanism–
induced evolution, $0, #0, and a1 are conserved, while "
changes. It follows that $0 ¼ #0 is the critical condition for
the system to be able to evolve to " ¼ 0 (e1 ¼ 1). This implies
a critical initial I of

I0 ¼ Ic ¼ cos$1 $
ffiffiffiffi
"0

p

2#

" #
; ð3Þ

where "0 is the initial ". For this solution to exist, # ' ffiffiffiffi
"0

p
=2

is required.
The total Hamiltonian of the system can be written as

H ¼ H1 þH2 þH 0, where H1 andH2 are the Hamiltonians
for the inner and outer binaries, respectively, as if they were
isolated binaries of point masses. H0 is the perturbative
Hamiltonian that includes perturbation of the inner binary
by the presence of the tertiary m2 and perturbation of the
outer binary by the finite size of the binary component M1.
For r1=r25 1 and ðm2=M1Þðr1=r2Þ35 1, the HamiltonianH0

can be expanded in powers of r1/r2. The first nonzero contri-
bution comes from the term of order (r1/r2)2, labeled as the
quadrupole term because of the degree of the Legendre
polynomial associated with it. This term is sufficient for our
discussion as we are only concerned about cases with large
initial mutual inclination angle I0 [see Ford, Kozinsky, &
Rasio 2000 for discussions concerning the octopole terms of
order (r1/r2)3].

It is this perturbative HamiltonianH0 that leads to a secu-
lar evolution of the triple system. In the first approximation,
the secular evolution can be described by H0 doubly aver-
aged over the mean anomaly of both the inner and outer
orbits. It turns out that the doubly averaged H0, the total
angular momentum of the system ($0), the energy of each

binary (or equivalently a1 and a2), and the magnitude of the
angular momentum of the outer binary (#0, or equivalently
e2) are conserved quantities. The secular evolution of the
triple system can therefore be fully described in terms of
time-evolving " and g1. A useful constant of integration can
be derived from equation (2),

a1" cos I þ
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¼ ð$2
0 $ #2

0Þ
2

4#2
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: ð4Þ

Note that the quantity on the left-hand side is conserved as
long as the total angular momentum ($0) and that of the
outer binary (#0) are conserved. In addition, wheneverffiffi
"

p
5 2#, a1" cos2 I is a constant.
The secular evolution is a result of coherent additions of

perturbations from the tertiary to the inner binary. There-
fore, any mechanism that perturbs the phase relation of the
system could modify the evolution of " and g1. For BH
systems, an important effect comes from the general relativ-
istic periastron precession of the inner binary. Inclusion of
this effect can be found in Miller & Hamilton (2002) and
Blaes, Lee, & Socrates (2002). In summary, contribution of
the periastron precession in the first-order post-Newtonian
approximation can be added to the doubly averaged
Hamiltonian asHPN ¼ $k%PN=

ffiffi
"

p
, where

%PN ¼ 8) 10$8 M1=M*ð Þ2

m2=M*

b2
a1

" #3 1

a1=AU
ð5Þ

and k ¼ 3Gm0m1m2a21=ð8M1b32Þ is a quantity related to the
evolution timescale. Apparently the influence of the peri-
astron precession (abbreviated as PN effect) is the largest (in
the sense that hPN is the largest) for systems consisting of a
tight and massive inner binary and a light, far-out third
component. With the addition of this PN effect, the total
Hamiltonian remains conserved. It can be written as
H ¼ kW (Miller &Hamilton 2002), where

Wð"; g1Þ ¼ $ 2"þ " cos2 I

þ 5ð1$ "Þ sin2 g1 cos2 I $ 1
$ %

þ %PN="
1=2 ð6Þ

is a conserved quantity.

2.2. Eccentricity Evolution in Absence of the GR Effect

The trajectories of e1 and g1 in the phase space are known
to be determined by the values of $ and # for given initial
system parameters (Lidov & Ziglin 1976). In the general
case of initial e1 6¼ 0, 1 and in the absence of the GR effect,
the quantities e1, g1 undergo cyclic oscillations. A necessary
condition for a large change in e1 is that I0 >
cos$1 3=5ð Þ1=2+ 39, for a restricted case where
m05m25m1. This condition still holds for arbitrary
masses when the PN effect is weak (as can be proved using
eq. [8]). The timescale for the system to swing from e1 + 0 to
e1 + 1 is estimated to be (Innanen et al. 1997)

&evol - 0:16f
M1

m2

" #1=2 a2
a1

" #3=2 ða2=AUÞ3=2

ðm2=M*Þ1=2
1$ e22
$ %3=2

yr ;

ð7Þ

where f + 0:42 logð1=e10Þ=½sin2ðI0Þ $ 0:4&1=2 is a quantity of
magnitude a few, e10 is the initial value of e1, and I0 is the
initial value of I. This timescale should be much longer than

I

m2

m1m0

r2

r1

Fig. 1.—Geometry of a hierarchical triple system

No. 1, 2003 KOZAI MECHANISM AND GRAVITATIONAL WAVE DETECTION 421

[Wen,&ApJ&(2003)]
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Equilibrium Solutions in Newton

Lagrange’s equilateral triangular solution (1772)

J. L. Lagrange

Is the solution Stable?

Condition of Stability

m1m2 +m2m3 +m3m1

(m1 +m2 +m3)2
<

1

27

Condition of stability for Lagrange solution in Newton
[Gascheau (1843); Routh (1875)]

[Douskos & Perdios (2002); Singh & Bello (2014)]
For the restricted case (               ) in GRm3 ! 0

m1m2

(m1 +m2)2
<

1

27

✓
1� 391

54
"

◆
, " ⌘ GM

c2r
⌧ 1
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Equations of motion for N-bodies

Einstein-Infeld-Hoffman (EIH) equations of motion (@ 1PN)

Employ the EIH equations of motion in a circular motion

Newtonian term

mK
d2rK
dt2

=
X

A6=K

rAK
GmAmK

r3AK

"
1� 4

X

B 6=K

GmB

c2rBK
�
X

C 6=A

GmC

c2rCA

✓
1� rAK · rCA

2r2CA

◆

+
⇣vK

c

⌘2
+ 2

⇣vA

c

⌘2
� 4

⇣vA

c

⌘
·
⇣vK

c

⌘
� 3

2

�
vA
c

�
· rAK

rAK

!2 #

�
X

A6=K

h
(
vA

c
)� (

vK

c
)
i GmAmK

r3AK

rAK ·
h
3
⇣vA

c

⌘
� 4

⇣vK

c

⌘i

+
7

2

X

A6=K

X

C 6=A

rCA
GmCmK

r3CA

GmA

c2rAK Triple product
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PN Corrections to Separation of Bodies

PN inequilateral triangle
rIJ = a(1 + "⇢IJ), " = O(1PN)

m3

m2
m1

a(1 + "⇢12)

a(1 + "⇢23)
a(1 + "⇢31)

⇢12 + ⇢23 + ⇢31 = 0

scale fixing

Equilibrium Triangular Solution in GR

PN Triangular solution in for general masses
[KY & Asada (2012)]

1

June 26, 2014

I. 一般相対論的三体問題の三角解

一般三体問題に対する平面円運動三角解を考える．G = c = 1の単位系を用いて，Newton重力における正三角解の
一辺の長さを a = 1に規格化する．また，系の総質量もM = 1とする．これによって，Newton重力における正三角解
での各天体の角速度は [1–3]

ωN =

√
GM

a3
= 1, (1.1)

である．
1PN近似における三体問題の三角解に運動平面内の微小な摂動を加える（Fig. 1）：

rIJ = 1 + ερIJ + δχIJ . (1.2)

ここで，ε = O(1PN)の微小パラメターで，ρIJ は 1PN近似における三角解を許すための相対論的な補正，また，δ(≪ ε)
は摂動の大きさを定める微小パラメターであり，χIJ が各天体間距離に対する摂動である．ただし，χIJ は Newton 項
だけでなく 1PN 項を含み，したがって，rIJ は ϵ× δのオーダーまで考慮されているものとする．一方で，ρIJ に含ま
れる O(1PN) 項は全体で無摂動の O(2PN) 項を構成するので，今回の計算では考慮しない．これらによって，三角形
の各内角 ϕIJ も変化し，

ϕIJ =
π

3
+
√
3ερIJ + δψIJ , (1.3)

となる．ただし，ψIJ は余弦定理から求めることの出来る内角に対する摂動で，1PN 項まで考慮する．さらに天体の相
対位相 θIJ を相対位置ベクトル rIJ ≡ rI − rJ が基準座標となす角度であるとし（Fig. 1参照），この相対位相にも摂
動を加える：

θIJ = θIJ |0 + δσIJ , (1.4)

ここで，θIJ |0は無摂動における天体の相対位相であり，無摂動の円運動三角解ではすべての天体が同じ角速度で回転す
るので

θ̇IJ |0 = ωN + εωPN , (1.5)

である．ただし，ωPN は天体共通の角速度に対する 1PN補正である．また，
θ23 = θ12 − π − ϕ31, (1.6)

θ31 = θ12 + π + ϕ23, (1.7)

という関係があるので，
σ̇23 = θ̇23 = θ̇12 − ϕ̇31 = σ̇12 − ψ̇31, (1.8)

σ̇31 = θ̇31 = θ̇12 + ϕ̇23 = σ̇12 + ψ̇23, (1.9)

である．すなわち，σ12 を基準に考えると，これは系全体の角速度に対する摂動を意味している．
三体の共通重心を座標原点とし，相対論的な補正によって三角形の面積が変わらないように系のスケールを固定する

と，Newton重力における正三角解に対する 1PN補正はそれぞれ [3]，

ρ12 =
1

24
[(ν2 − ν3)(5− 3ν1)− (ν3 − ν1)(5− 3ν2)], (1.10)

ρ23 =
1

24
[(ν3 − ν1)(5− 3ν2)− (ν1 − ν2)(5− 3ν3)], (1.11)

ρ31 =
1

24
[(ν1 − ν2)(5− 3ν3)− (ν2 − ν3)(5− 3ν1)], (1.12)

ここで νI = mI/M は総質量に対する各天体の質量比である．このとき，無摂動における 1PN近似の下での各天体の角
速度は

ω = ωN + εωPN , (1.13)

ここで，ωN = 1および，

ωPN = − 1

16
[29− 14(ν1ν2 + ν2ν3 + ν3ν1)], (1.14)

である [3]．

PN corrections for equilibrium solution are uniquely

⌫I = mI/(m1 +m2 +m3)
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Perturbations to PN Triangular Solution
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3
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3"⇢23 + � 23

!t+ ��
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we have

Dσ23 = D(σ − ψ31), Dσ31 = D(σ + ψ23), (5.54)

where we replace σ12 as σ. ψIJ is perturbations to each interior angle ϕIJ. From (A.12), we obtain

ψ31 =

√
3

2

(
[1 + ε(ρ31 + 2ρ12)]χ31 − [1 + ε(2ρ31 + ρ12)]χ12

)
− 1

2
[1 + 2ε(ρ31 − ρ12)]ψ23. (5.55)

However, its derivative appears only the 1PN terms, and hence the PN corrections in the above ex-
pression make second (or higher) order contributions. Thus, we take into account only the Newtonian
term:

Dψ31 = −
1
2

D(
√

3χ12 −
√

3χ31 + ψ23). (5.56)

As a result, the real part of the equation of motion for z12 becomes
⎡
⎢⎢⎢⎢⎣(D2 − 3)χ12 − 2Dσ − 9

4
ν3X − 3

√
3

4
ν3ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4
√

3(ν1 − ν2)(7 − 9ν3)ν3D

+ (36ν3
2 + 234ν1ν

2
2 − 146ν2

2 + 261ν2
1ν2 − 488ν1ν2 + 155ν2 + 63ν3

1 − 155ν2
1 + 137ν1

− 585)
}
χ12 −

1
24

(27ν3
2 + 135ν1ν

2
2 − 21ν2

2 + 135ν2
1ν2 − 210ν1ν2 + 24ν2 + 27ν3

1 − 21ν2
1

+ 24ν1 − 155)Dσ − 1
32
ν3

{
4
√

3(9ν1ν2 + 10ν2 + 9ν2
1 − 6ν1 − 4)D − (216ν2

2 + 288ν1ν2

− 154ν2 + 171ν2
1 − 38ν1 + 420)

}
X +

1
32
ν3

{
4(18ν2

2 + 27ν1ν2 − 2ν2 + 9ν2
1 + 14ν1

− 12)D +
√

3(51ν2
2 + 114ν1ν2 + 2ν2 + 87ν2

1 − 120ν1 + 155)
}
ψ23

]
= 0, (5.57)

and the imaginary part is
⎡
⎢⎢⎢⎢⎣2Dχ12 + D2σ − 3

√
3

4
ν3X +

9
4
ν3ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4(9ν3

2 + 45ν1ν
2
2 + 9ν2

2 + 45ν2
1ν2

− 30ν1ν2 − 18ν2 + 9ν3
1 + 9ν2

1 − 18ν1 + 61)D + 3
√

3ν3(12ν2
2 − 6ν1ν2 + 14ν2 − 15ν2

1

+ 4ν1 − 5)
}
χ12 −

1
24

{
(3ν2

2 + 12ν1ν2 − 18ν2 + 3ν2
1 − 18ν1 + 10)D2 − 3

√
3(ν1 − ν2)

× ν3(9ν2 + 9ν1 + 4)D
}
σ +

1
32
ν3

{
4(18ν2

2 + 27ν1ν2 + 8ν2 + 9ν2
1 + 16ν1 − 12)D

+
√

3(36ν2
2 + 72ν1ν2 − 54ν2 + 81ν2

1 − 90ν1 + 160)
}
X +

1
32
ν3

{
4
√

3(9ν1ν2 + 8ν2

+ 9ν2
1 − 4)D − 9(21ν2

2 + 14ν1ν2 − 10ν2 + 13ν2
1 − 8ν1 + 45)

}
ψ23

]
= 0. (5.58)
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we have

Dσ23 = D(σ − ψ31), Dσ31 = D(σ + ψ23), (5.54)

where we replace σ12 as σ. ψIJ is perturbations to each interior angle ϕIJ. From (A.12), we obtain

ψ31 =

√
3

2

(
[1 + ε(ρ31 + 2ρ12)]χ31 − [1 + ε(2ρ31 + ρ12)]χ12

)
− 1

2
[1 + 2ε(ρ31 − ρ12)]ψ23. (5.55)

However, its derivative appears only the 1PN terms, and hence the PN corrections in the above ex-
pression make second (or higher) order contributions. Thus, we take into account only the Newtonian
term:

Dψ31 = −
1
2

D(
√

3χ12 −
√

3χ31 + ψ23). (5.56)

As a result, the real part of the equation of motion for z12 becomes
⎡
⎢⎢⎢⎢⎣(D2 − 3)χ12 − 2Dσ − 9

4
ν3X − 3

√
3

4
ν3ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4
√

3(ν1 − ν2)(7 − 9ν3)ν3D

+ (36ν3
2 + 234ν1ν

2
2 − 146ν2

2 + 261ν2
1ν2 − 488ν1ν2 + 155ν2 + 63ν3

1 − 155ν2
1 + 137ν1

− 585)
}
χ12 −

1
24

(27ν3
2 + 135ν1ν

2
2 − 21ν2

2 + 135ν2
1ν2 − 210ν1ν2 + 24ν2 + 27ν3

1 − 21ν2
1

+ 24ν1 − 155)Dσ − 1
32
ν3

{
4
√

3(9ν1ν2 + 10ν2 + 9ν2
1 − 6ν1 − 4)D − (216ν2

2 + 288ν1ν2

− 154ν2 + 171ν2
1 − 38ν1 + 420)

}
X +

1
32
ν3

{
4(18ν2

2 + 27ν1ν2 − 2ν2 + 9ν2
1 + 14ν1

− 12)D +
√

3(51ν2
2 + 114ν1ν2 + 2ν2 + 87ν2

1 − 120ν1 + 155)
}
ψ23

]
= 0, (5.57)

and the imaginary part is
⎡
⎢⎢⎢⎢⎣2Dχ12 + D2σ − 3

√
3

4
ν3X +

9
4
ν3ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4(9ν3

2 + 45ν1ν
2
2 + 9ν2

2 + 45ν2
1ν2

− 30ν1ν2 − 18ν2 + 9ν3
1 + 9ν2

1 − 18ν1 + 61)D + 3
√

3ν3(12ν2
2 − 6ν1ν2 + 14ν2 − 15ν2

1

+ 4ν1 − 5)
}
χ12 −

1
24

{
(3ν2

2 + 12ν1ν2 − 18ν2 + 3ν2
1 − 18ν1 + 10)D2 − 3

√
3(ν1 − ν2)

× ν3(9ν2 + 9ν1 + 4)D
}
σ +

1
32
ν3

{
4(18ν2

2 + 27ν1ν2 + 8ν2 + 9ν2
1 + 16ν1 − 12)D

+
√

3(36ν2
2 + 72ν1ν2 − 54ν2 + 81ν2

1 − 90ν1 + 160)
}
X +

1
32
ν3

{
4
√

3(9ν1ν2 + 8ν2

+ 9ν2
1 − 4)D − 9(21ν2

2 + 14ν1ν2 − 10ν2 + 13ν2
1 − 8ν1 + 45)

}
ψ23

]
= 0. (5.58)

49

In the same way, we obtain the equation of motion for z31 and its real part is
⎡
⎢⎢⎢⎢⎣(D2 − 3)χ12 − 2Dσ +

(
D2 − 3 +

9
4
ν2

)
X −

⎛
⎜⎜⎜⎜⎝2D +

3
√

3
4

ν2

⎞
⎟⎟⎟⎟⎠ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4
√

3

× (ν3 − ν1)(7 − 9ν2)ν2D + (36ν3
3 + 234ν1ν

2
3 − 146ν2

3 + 261ν2
1ν3 − 488ν1ν3 + 155ν3

+ 63ν3
1 − 155ν2

1 + 137ν1 − 585)
}
χ12 −

1
24

(27ν3
3 + 135ν1ν

2
3 − 21ν2

3 + 135ν2
1ν3 − 210ν1ν3

+ 24ν3 + 27ν3
1 − 21ν2

1 + 24ν1 − 155)Dσ − 1
32

{
4
√

3ν2(9ν2
3 + 9ν1ν3 + 8ν3 − 4ν1 − 4)D

− (180ν3
3 + 270ν1ν

2
3 − 224ν2

3 + 198ν2
1ν3 + 8ν1ν3 + 419ν3 + 108ν3

1 − 54ν2
1 + 321ν1

+ 165)
}
X +

1
96

{
4(27ν3

3 − 39ν2
3 − 27ν2

1ν3 + 165ν1ν3 − 54ν3 + 36ν2
1 − 102ν1 + 191)D

+ 3
√

3ν2(51ν2
3 + 114ν1ν3 + 2ν3 + 87ν2

1 − 120ν1 + 155)
}
ψ23

]
= 0, (5.59)

and the imaginary part is
⎡
⎢⎢⎢⎢⎣2Dχ12 + D2σ +

⎛
⎜⎜⎜⎜⎝2D − 3

√
3

4
ν2

⎞
⎟⎟⎟⎟⎠ X +

(
D2 − 9

4
ν2

)
ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4(9ν3

3 + 45ν1ν
2
3

+ 9ν2
3 + 45ν2

1ν3 − 30ν1ν3 − 18ν3 + 9ν3
1 + 9ν2

1 − 18ν1 + 61)D − 3
√

3ν2(12ν2
3 − 6ν1ν3

+ 14ν3 − 15ν2
1 + 4ν1 − 5)

}
χ12 −

1
24

{
(3ν2

3 + 12ν1ν3 − 18ν3 + 3ν2
1 − 18ν1 + 10)D2

− 3
√

3(ν3 − ν1)(13 − 9ν2)ν2D
}
σ +

1
32

{
4(9ν3

3 − 19ν2
3 − 9ν2

1ν3 + 27ν1ν3 − 2ν3 − 2ν2
1

− 10ν1 − 49)D +
√

3(72ν2
3 + 54ν1ν3 − 12ν3 + 36ν2

1 − 78ν1 + 145)ν2

}
X − 1

96

{
4(3ν2

3

+ 12ν1ν3 − 18ν3 + 3ν2
1 − 18ν1 + 10)D2 − 12

√
3(9ν2

3 + 9ν1ν3 + 12ν3 − 4ν1 − 4)ν2D

− 27(21ν2
3 + 14ν1ν3 − 10ν3 + 13ν2

1 − 8ν1 + 45)ν2

}
ψ23

]
= 0. (5.60)
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In the same way, we obtain the equation of motion for z31 and its real part is
⎡
⎢⎢⎢⎢⎣(D2 − 3)χ12 − 2Dσ +

(
D2 − 3 +

9
4
ν2

)
X −

⎛
⎜⎜⎜⎜⎝2D +

3
√

3
4

ν2

⎞
⎟⎟⎟⎟⎠ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4
√

3

× (ν3 − ν1)(7 − 9ν2)ν2D + (36ν3
3 + 234ν1ν

2
3 − 146ν2

3 + 261ν2
1ν3 − 488ν1ν3 + 155ν3

+ 63ν3
1 − 155ν2

1 + 137ν1 − 585)
}
χ12 −

1
24

(27ν3
3 + 135ν1ν

2
3 − 21ν2

3 + 135ν2
1ν3 − 210ν1ν3

+ 24ν3 + 27ν3
1 − 21ν2

1 + 24ν1 − 155)Dσ − 1
32

{
4
√

3ν2(9ν2
3 + 9ν1ν3 + 8ν3 − 4ν1 − 4)D

− (180ν3
3 + 270ν1ν

2
3 − 224ν2

3 + 198ν2
1ν3 + 8ν1ν3 + 419ν3 + 108ν3

1 − 54ν2
1 + 321ν1

+ 165)
}
X +

1
96

{
4(27ν3

3 − 39ν2
3 − 27ν2

1ν3 + 165ν1ν3 − 54ν3 + 36ν2
1 − 102ν1 + 191)D

+ 3
√

3ν2(51ν2
3 + 114ν1ν3 + 2ν3 + 87ν2

1 − 120ν1 + 155)
}
ψ23

]
= 0, (5.59)

and the imaginary part is
⎡
⎢⎢⎢⎢⎣2Dχ12 + D2σ +

⎛
⎜⎜⎜⎜⎝2D − 3

√
3

4
ν2

⎞
⎟⎟⎟⎟⎠ X +

(
D2 − 9

4
ν2

)
ψ23

⎤
⎥⎥⎥⎥⎦ + ε

[
− 1

32

{
4(9ν3

3 + 45ν1ν
2
3

+ 9ν2
3 + 45ν2

1ν3 − 30ν1ν3 − 18ν3 + 9ν3
1 + 9ν2

1 − 18ν1 + 61)D − 3
√

3ν2(12ν2
3 − 6ν1ν3

+ 14ν3 − 15ν2
1 + 4ν1 − 5)

}
χ12 −

1
24

{
(3ν2

3 + 12ν1ν3 − 18ν3 + 3ν2
1 − 18ν1 + 10)D2

− 3
√

3(ν3 − ν1)(13 − 9ν2)ν2D
}
σ +

1
32

{
4(9ν3

3 − 19ν2
3 − 9ν2

1ν3 + 27ν1ν3 − 2ν3 − 2ν2
1

− 10ν1 − 49)D +
√

3(72ν2
3 + 54ν1ν3 − 12ν3 + 36ν2

1 − 78ν1 + 145)ν2

}
X − 1

96

{
4(3ν2

3

+ 12ν1ν3 − 18ν3 + 3ν2
1 − 18ν1 + 10)D2 − 12

√
3(9ν2

3 + 9ν1ν3 + 12ν3 − 4ν1 − 4)ν2D

− 27(21ν2
3 + 14ν1ν3 − 10ν3 + 13ν2

1 − 8ν1 + 45)ν2

}
ψ23

]
= 0. (5.60)

50

Equations of Motion for Perturbations

Matrix Form of Equations of Motion

Equations of motion for the perturbations are

Roots can be formally expressed

:           matrixM 8⇥ 8

�̇12 ⌘ D�12, Ẋ ⌘ DX, �̇ ⌘ D�,  ̇12 ⌘ D 12, D ⌘ d

dt

�12 = C1e
�1t + C2e

�2t + · · ·

Defining new variables

CI (I = 1, 2, · · · ) : constants, M�I : eigenvalues of 

DX = MX,

X ⌘ (Ẋ, �̇12, �̇,  ̇23, X,�12,�, 23)
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C. 上記以外の場合

上記の場合は摂動のうちいずれかが恒等的にゼロの場合であった．さて，本題は

λ2 =
1

2

[
−1±

√
1− 27(ν1ν2 + ν2ν3 + ν3ν1)

]
, (4.37)

の場合である．この時，摂動すべてが有限の値を持つ．したがって，摂動が振動し，平衡解が線形安定であるためには，
λ2 が実数かつ負であることが必要（十分？）条件である．すなわち，

ν1ν2 + ν2ν3 + ν3ν1 <
1

27
, (4.38)

である．

V. 1PN ORDER

1PN補正を考慮した行列式は

− 1

96
λ2
[
4

(
−24 + ε

[
−10ν21 + 5(ν22 + ν23)− 2ν1(ν2 + ν3) + 4ν2ν3

])
λ6

+ 8

(
−24 + ε

[
221ν21 + 236(ν22 + ν23) + 430ν1(ν2 + ν3) + 436ν2ν3

])
λ4

+

(
−24

[
4 + 27(ν1ν2 + ν2ν3 + ν3ν1)

]

+ ε
[
1868(ν43 + ν42) + 1808ν41 + 15173ν2ν3(ν

2
3 + ν22) + 15149ν1(ν

3
3 + ν32) + 14624ν31(ν3 + ν2)

+ 23910ν21(ν
2
3 + ν22) + 24180ν22ν

2
3 + 56799ν1ν2(ν3 + ν2) + 56088ν21ν2ν3

])
λ2

− 27

(
24(ν1ν2 + ν2ν3 + ν3ν1)− ε

[
526(ν2ν

3
3 + ν1ν

3
3 + ν1ν

3
2 + ν32ν3) + 511ν31(ν3 + ν2)

+ 920ν22ν
2
3 + 914ν21(ν

2
3 + ν22) + 2288ν1ν2ν3(ν3 + ν2) + 2267ν21ν2ν3

])]
= 0, (5.1)

あるいは

λ2
[
λ6 + 2

(
1− 1

8
ε [77− 10(ν1ν2 + ν2ν3 + ν3ν1)]

)
λ4

+

([
1 +

27

4
(ν1ν2 + ν2ν3 + ν3ν1)

]
− 1

16
ε

[
308 + 1265(ν1ν2 + ν2ν3 + ν3ν1) + 162ν1ν2ν3 − 378(ν1ν2 + ν2ν3 + ν3ν1)

2

])
λ2

+

(
27

4
(ν1ν2 + ν2ν3 + ν3ν1)−

9

32
ε

[
521(ν1ν2 + ν2ν3 + ν3ν1)− 72ν1ν2ν3 − 126(ν1ν2 + ν2ν3 + ν3ν1)

2

])]
= 0,

(5.2)

となる．自明な解として λ2 = 0があり，残りは λ2 に関する 3次方程式となっている．ここで，
τ ≡ λ2, (5.3)

V ≡ ν1ν2 + ν2ν3 + ν3ν1, (5.4)

W ≡ ν1ν2ν3, (5.5)

と置いて，非自明な解を探すために λ2 で両辺を割ると，

τ3 + 2

{
1− 1

8
ε (77− 10V )

}
τ2 +

{(
1 +

27

4
V

)
− 1

16
ε
(
308 + 1265V + 162W − 378V 2

)}
τ

+
27

4

{
V − 1

24
ε
(
521V − 72W − 126V 2

)}
= 0, (5.6)

pure imaginary number� =linear stable

m1m2 +m2m3 +m3m1

(m1 +m2 +m3)2
+

15

2

m1m2m3

(m1 +m2 +m3)3
" <

1

27

✓
1� 391

54
"

◆

Eigenvalue equation (secular equation) of  the matrix       isM

Stable Region of Mass Ratios

Stable region is more narrow by the PN effects
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Comparison with Restricted Case

Our work for general masses

m1m2 +m2m3 +m3m1

(m1 +m2 +m3)2
+

15

2

m1m2m3

(m1 +m2 +m3)3
" <

1

27

✓
1� 391

54
"

◆

[Douskos & Perdios (2002); Singh & Bello (2014)]
For the restricted case (               ) in GRm3 ! 0

PN 3-body interaction!

m1m2

(m1 +m2)2
<

1

27

✓
1� 391

54
"

◆
, " ⌘ GM

c2r
⌧ 1

Contents

• Introduction

• Post-Newtonian Triangular Solution

• Linear Stability

• Summary
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Summary

• The condition of stability is more strict
(PN 3-body interaction)

• Stable with one dominant mass
→ around SMBHs

• More unstable by PN effects 
→ GW radiation may be affected

On-going Works

• GW reaction to Triangular solution
(Poster No. A01 by Iseki-san
 & No. A02 by Harada-san) 

• Marginally Stable Circular Orbit (MSCO)
(Poster No. B01 by Suzuki-san
 & No. B02 by Ono-san)

Iseki-san

Suzuki-san Ono-san

Harada-san
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THANK YOU FOR YOUR ATTENTION
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“Slowly rotating gravastars with a thin shell”

Nami Uchikata

[JGRG24(2014)111217] 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SLOWLY ROTATING 
GRAVASTARS WITH A 
THIN SHELL�
Nami Uchikata 
(CENTRA, Universidade de Lisboa, Portugal) 
and 
Shijun Yoshida 
(Astronomical Institute, Tohoku University, Japan)�

Gravastars�
• Mazur & Mottola (2004)
Compact object model alternative to black holes without the 
event horizon. 
During the gravitational collapse, a quantum phase transition 
occurs before the event horizon is formed. 
Spherically symmetric, as compact as black holes. 

 de Sitter core + shell + Schwarzschild 

Thin shell : 
Stable against radial perturbations.   (Visser & Wiltshire 2008)
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• How to distinguish them from black holes by observations?
 - Oscillation modes (gravitational � O, electromagnetic � ✕?) 

(Chirenti & Rezzolla 2007, 2008, Pani et al. 2008, Cardoso et al. 2009) 

     - Quadrupole deformation (rotating case) 
          Exterior of rotating stars ≠ Kerr spacetime 
• No general solution for rotating gravastars. 

• We use the slow rotation approximation up to O(�2) and
assume the shell is thin.
(�=�/�k,<<1,  �: angular velocity of the shell, �k: Keplerian

frequency) �

Metric�

+ : outside the shell,  - : inside the shell�
M : mass of gravastar,  L :de Sitter horizon radius�
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Outside the shell�
• Hartle (1967),
Hartle & Thorne 
(1968) 

B = 0 for  
the Kerr metric 

angular momentum�

change of mass�

quadrupole moment 
Q = J2/M+8 BM3/5�

Inside the shell�
Solving Einstein equations with a cosmological constant�

Functions are regular at the origin. 
C1, C2 and C3 are given from the junction condition. (Israel 1966)�
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Thin shell�

x±( )
µ
= A±T,R+ε 2ξ ±,Θ,Φ( )• Location of the shell�

(A+=1,  A- = const.)�

• Stress energy tensor of the shell�

• Solutions stable against radial perturbations (Visser and Wiltshire 2004)�

• The shell satisfies the dominant energy condition.� σ 0 ≥ p0

Jump of the extrinsic curvature�

the radius of the shell 
in the zero-rotation limit�

(ε→ 0)

• The shell is a perfect fluid. (isotropic pressure)

• Equation of state of the shell
In this talk, we assume the shell to be a polytropic fluid 
with n =1. 

• Total particle number is conserved.�
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Results (L = 1) �

�0�

p0/�0�

R/M�
(Endpoints of R/M are determined from the dominant energy condition.)�

 0.6

 0.7

 0.8

 0.9

 1

 2.2  2.4  2.6  2.8  3  3.2  3.4

p 0
/σ

0

R/M

M=1/7

M=1/}}√40

M=1/6

M=1/5

M=1/}}√21

QM/J2 [ = 1+8 BM2/(5J2) ]� e2�

R/M�
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R/M�

δp2 / p0

δσ = δσ 0 +δσ 2P2 cosΘ( )
δp = δp0 +δp2P2 (cosΘ)

δσ 2 /σ 0

Perturbed energy density 
and pressure  

quadrupole perturbations�

R/M�

δσ 0 /σ 0 δp0 / p0

spherically symmetric perturbations�
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Summary�
• We have constructed solutions of slowly rotating gravastars

with a thin shell up to O(�2).

• We have found that most of the solutions have a prolate shell.

• We can not get solutions 2.2M ≲ R ≲ 2.3M.
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“Particle Collision in Wormhole Spacetimes”

Naoki Tsukamoto

[JGRG24(2014)111218] 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Particle Collision in Wormhole Spacetimes

Naoki Tsukamoto

(Fudan University in China)

N. T. and C. Bambi, arXiv:1411.xxxx

November 10-14, 2014 JGRG24 @ Kavli IPMU, Tokyo University in Chiba

1

Particle Collision near the Kerr black hole.

• In 1975, Piran, Shaham and Katz inves-
tigated a collisional Penrose process and
pointed out that the center-of-mass (CM)

energy for the collision of two particles

can be arbitrary high.

• In 2009, Bañados, Silk and West (BSW) re-
discovered it.

Figure in Harada and Kimura

(2014).

2
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BSW effect. Bañados, Silk and West (2009)

• ECM of a collision of particles in the extremal Kerr spacetime in
the near horizon limit r → r+ on the equatorial plane:

lim
r→r+

ECM(r)

2m
= lim

r→r+

(
pµ(1) + pµ(2)

) (
p(1)µ + p(2)µ

)

=

√√√√√
1

2

⎛

⎝
2ME(1) − L(1)

2ME(2) − L(2)
+

2ME(2) − L(2)

2ME(1) − L(1)

⎞

⎠,

pµ: four-momentum, m: particle mass, M : black hole mass,
E: conserved energy, L: conserved angular momentum

• Critical particle: L = 2ME.

• ECM/2m diverges if either of two particles is critical and the

other is non-critical. (BSW effect.)

3

About a critical particle.

a: the spin parameter.

Figure in Harada and
Kimura (2014).

• Critical particles can directly reach the horizon only in the

extremal case a = M.

• It needs infinite proper time to reach the horizon.

4
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BSW effect of extremal charged BH.
Zaslavskii (2010)

• If either of two particles is critical, ECM diverges.

• Critical particle has q =
√
4πE.

• It needs infinite proper time for the critical particle to reach the
event horizon.
(The force balance of ”gravitational force” and Coulomb force.)

• There are a clear correspondence to the Kerr BH case.

• BSW effect is an essential feature of extremal BHs.

5

Criticisms for BSW mechanism.
• It needs infinite proper time for the critical particle to reach the

event horizon in the extremal Kerr spacetime.

• The back reaction effects will suppress ECM .
−→ In realistic situations, ECM would be a finite and large

value.

• There is an upper bound on the black hole spin parameter a <

0.998M for an astrophysical situation. (Thorne 1974)
−→ The bound depends on the models of accretion disks

and it can be violated.

• The observer at infinity will observe highly red-shifted phenomena
after high energy collision.
−→ This is not a criticism but an aspect of the BSW ef-

fect. We can observe red-shifted phenomena after particle

collisions in principle.

6
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Harada san will give us a better review
than mine.

Tomorrow 17:15-17:30 Tomohiro Harada (Rikkyo)

”Black holes as particle accelerators: a brief review”

I guess that he will talk on

• the BSW effect on non-equatorial planes

• a collisional Penrose process

• the collision of ISCO particles

• gravitational radiation reaction,

he may talk on

• effects of magnetic field

and he will not talk on

• higher dimensional case (N.T., M. Kimura and T. Harada, 2014).

7

Instability and BSW effect.
• The gravity induced by particles after the collision is so strong

that a new black hole can be born near an extremal black hole.
(M. Kimura, K. Nakao and H. Tagoshi, 2011.)

• From this point of view, BSW effect suggests a tight relation to
instability of background spacetime by the process of a particle
collision. (cf. a test field instability of the extremal BHs.)

In this talk, I will consider particle collision in a highly rotating worm-
hole spacetime and discuss instability of the wormhole against particle
collisions following this idea.

8
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A Rotating Wormhole(Teo, 1998)
Teo considered a rotating wormhole met-
ric in spherical polar coordinates which is
given by

ds2 = −N2dt2 +
1

1− b
r

dr2

+r2K2
[
dθ2 + sin2 θ(dφ− ωdt)2

]
,

N = K = 1+
16a2d cos2 θ

r
, ω =

2a

r3
.

b, d: positive constants
a ! 0:angular momentum
The radial coordinate r ≥ b.

The throat has a
peanut-shell-like shape.

• The wormhole throat exists at r = b.

• If a > b2/2, the ergoregion exists in the range 2a |sin θ| > r2 > b2.

• Null energy condition Tµνkµkν ≥ 0 is violated at the throat in some
regions of θ.

9

Simplification and Configuration of Particle
Collision.
• We concentrate on θ = π/2.

ds2 = −dt2 + dρ2 + r2(ρ)
(
dφ− 2a/r3(ρ)dt

)2
,

• a new radial coordinate −∞ < ρ < ∞

ρ ≡ ±
[√

r(r − b) + b log
(√

r

b
+
√
r

b
− 1

)]
.

• Wormhole throat is at ρ = 0

• For simplicity, we concentrate on L < 0 and E > 0.

• Particles moving along the geodesic satisfy the forward-in-time
condition everywhere:

dt

dλ
= E(ρ) ≡ E −

2aL

r3(ρ)
≥ 0,

where λ is an affine parameter.

10
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ECM of particle collision at ρ = 0 is given by

E2
CM = m2

(1) +m2
(2) + 2E(1)E(2) −

2L(1)L(2)

b2
+ 2

√
R(1)

√
R(2).

R(1) ≡ −m2
(1) + E2

(1) −
L2
(1)

b2
, E(1) ≡ E(1) −

2aL(1)

b3
.

• In the static case (a = 0), the wormhole cannot be a particle
accelerator since E2(> m2 + L2/b2) should be large for b ≪ |LI |.

E2
CM = m2

(1) +m2
(2) + 2E(1)E(2) −

2L(1)L(2)

b2

+2

√√√√−m2
(1) + E2

(1) −
L2
(1)

b2

√√√√−m2
(2) + E2

(2) −
L2
(2)

b2
.

• In highly rotating and small b case ( b ≪ a
1
2, |LI/EI | and |LI/mI |),

high energy collisions can occur without critical particles.

E2
CM ∼ 16a2L(1)L(2)/b

6.

11

Potential for particle which can reach ρ = 0.

I (a = 1, m = 1, E = 1.1, L = −1, b = 1)

II (a = 1, m = 1, E = 1.1, L = −1, b = 0.001)

III (a = 1, m = 1, E = 2, L = −2, b = 0.001)

IV (a = 1, m = 1, E = 2, L = −1, b = 0.001),

V (a = 2, m = 1, E = 2.2, L = −1, b = 0.001)

VI (a = 1, m = 2, E = 2.2, L = −1, b = 0.001)

• The allowed region is given by Veff(ρ) ≤ 0.

Veff(ρ) ≡
1

2

⎡

⎣m2 −
(

E −
2aL

r3(ρ)

)2
+

L2

r2(ρ)

⎤

⎦ .

• Veff(−ρ) = Veff(ρ).
dVeff(0)

dρ = 0.

• We can see that proper time is finite.

12
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Particle collision and instability of wormhole.
• ECM only depends on the metric.

• On the other hand, stability of wormholes should depend on

the matter as gravitational source.

• Does the high ECM suggest instability of the wormhole un-

der the process of the particle collision?

An example of stability of wormholes: Simplest wormhole metric case.

• The Ellis wormhole (filled with a phantom scalar field)is unstable under linear
perturbations.
ds2 = −dt2 + dρ2 + (ρ2 + b2)(dθ2 + sin2 θdφ2).

• A wormhole with the same metric but different matters is linearly stable
under both spherically symmetric perturbations and axial perturbations. (Bron-
nikov et al. 2013)

• (The later seems to be the first example of stable wormhole without thin shells
in GR.)

13

Conclusion and Discussion.

• In highly rotating and small b wormhole case ( b ≪ a
1
2, |LI/EI | and

|LI/mI |), high CM energy collisions can occur near the wormhole
throat.

• We do not need particles with a fine-tuned angular momentum.

• Particles can reach the throat in finite proper time.

• The wormhole spacetime is not extremal at all in any sense.

• Does high ECM imply instability of a background spacetime

under the process of particle collisions?

Thank you.

14



�576

 

Conclusion and Discussion.

• In highly rotating and small b wormhole case ( b ≪ a
1
2, |LI/EI | and

|LI/mI |), high CM energy collisions can occur near the wormhole
throat.

• We do not need particles with a fine-tuned angular momentum.

• Particles can reach the throat in finite proper time.

• The wormhole spacetime is not extremal at all in any sense.

• Does high ECM imply instability of a background spacetime

under the process of particle collisions?

Thank you.

15
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“Negative tension branes as stable thin shell wormholes”

Takafumi Kokubu

[JGRG24(2014)111219] 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NEGATIVE TENSION BRANES AS 
STABLE THIN-SHELL WORMHOLES

Takafumi Kokubu (D1) and Tomohiro Harada 
@ Rikkyo University 
In preparation.

0.MOTIVATION

criterion of existence of wormholes 

!

Negative tension branes have no internal 
dynamical degrees of freedom.

2
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1.WORMHOLES

What is wormhole?!
!

Naively, !
“wormholes are space-time structures 
which connect two different universes!

 or !
two different points of our universe”!

!
Theoretical prophecy from GR!

!
Some exact solutions to Einstein Eqs.

our universe

another universe

3

throat

V-V+

(d � 4)

Higher dimensional!
Einstein eqs.

Static !
space-times

2.CONSTRUCTION

4

(d⌦k
d�2)

2 =

k = 1 : (d⌦1
d�2)

2 = d✓21 + sin2 ✓1d✓
2
2 + . . .+

d�3Y

i=2

sin2 ✓id✓
2
d�2

k = 0 : (d⌦0
d�2)

2 = d✓21 + d✓22 + . . .+ d✓2d�2

k = �1 : (d⌦�1
d�2)

2 = d✓21 + sinh2 ✓1d✓
2
2 + . . .+ sinh2 ✓1

d�3Y

i=2

sin2 ✓id✓
2
d�2

sphere

plane (cylinder)

hyperboloid

spherical

planar (cylindrical)

hyperbolic

ds2 = �f(r)dt2 + f(r)�1dr2 + r2(d⌦k
d�2)

2,

f(r) = k � ⇤r2

3
� M

rd�3
+

Q2

r2(d�3)

RN dS

@V+ @V�

RN dS

Si
j = � 1

8⇡
(i

j � �ij
l
l),

i
j = (Ki+

j �Ki�
j )

��
@V

The junction!
conditions:

n↵± ⌘ ± F,↵

|gµ⌫F,µF,⌫ |
1
2

F = r � a(⌧) = 0

K±
ij ⌘ (rµn

±
⌫ )e

µ
(i)±e

⌫
(j)±

RNdS is a specific solution

Gµ⌫± +
(d� 1)(d� 2)

6
⇤gµ⌫± = 8⇡Tµ⌫±
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p = ��EoS : negative tension brane 

Sij
|j + [T↵

� e
i
↵n

� ] = 0

� :

p :
the surface energy density!
the surface pressure

n↵±

e↵(i)± @V([X] := (X+ �X�)|@V)

(No internal dynamical!
 degrees of freedom)

) � = �|↵|, p = +|↵|

↵ : negative const.

V (a) = f(a)�
✓

4⇡↵

d� 2

◆2

a2the conservation law of!
mechanical energy for the shell

ȧ2 + V (a) = 0

E.O.M for the shell ä = �1

2
V 0(a)

a0

V"Ha0L > 0

V"Ha0L < 0
a

VHaL

the stability condition :

concave

convex

V+

V�

a = a0

Stabilities of wormholes with a negative tension brane

Static solution, Stability condition, Horizon avoidance

stabilities consist of…

Static solution:

Stability condition:

 Horizon avoidance: f(a0) > 0

k=+1 : spherical symmetry!
k=-1 : hyperbolic symmetry!
k=0 : plane (cylindrical) symmetry

a0
2
f 0(a0)� f(a0) = 0

V (a) = f(a)�
✓

4⇡↵

d� 2

◆2

a2

f(a) = k � ⇤a2

3
� M

ad�3
+

Q2

a2(d�3)

⇤only contributes to!
horizon avoidance
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M>0 
ȧ2 + V (a) = 0 ,

✓
ln a

d⌧

◆2

+ Ṽ (a) = ⇤e↵

Ṽ (a) ⌘ k

a2
� M

ad�1
+

Q2

a2(d�2)
, ⇤e↵ ⌘ ⇤

3
+

✓
4⇡↵

d� 2

◆2

k = +1 : spherical symmetry

Q=0

Q=0.9

Q=1

Q=1.02

"Q=Qc"

0.5 1.0 1.5 2.0 2.5 3.0a

-0.4

-0.2

0.0

0.2

0.4

Vé HaL

0.2 0.4 0.6 0.8 q

-0.4

-0.2

0.0

0.2

0.4

0.6
HHd,qL

d = 4

d = 5

d = 10
Wormhole without    

f(a0) > 0 , � < H(d, q)

 Horizon avoidance:

✓
� :=

⇤

3
M

2
d�3 , q :=

|Q|
M

◆

d=4, M→2m: Barcelo-Visser :

1 <

✓
|Q|
m

◆2

<
9

8

1 < 4

✓
|Q|
M

◆2

<
(d� 1)2

4(d� 2)

Q 6= 0 :

Figure1

Q = 0 : None Figure1

⇤

  M<0   M=0 

Q=0

Q=0.9

Q=1.5

1 2 3 4 5 a
-0.1

0.0

0.1

0.2

0.3

0.4

0.5
Vé HaL

Q=0

Q=0.9

Q=1.5

1 2 3 4 5 a
-0.1

0.0

0.1

0.2

0.3

0.4

0.5
Vé HaL

None

k = +1 : spherical symmetry

d = 4d = 4

None



�582

k = �1 : hyperbolic symmetry

Q=0

Q=1.5

Q=2.0

0.5 1.0 1.5 2.0 2.5 3.0a

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Vé HaL
M>0 

 Horizon avoidance: Figure2

d=4

d=5

d=10

d=100

2 4 6 8 10q

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
IHd,qL

f(a0) > 0 , � < I(d, q)

✓
� :=

⇤

3
M

2
d�3 , q :=

|Q|
M

◆
d = 4

Figure2

Q = 0 : None

Q 6= 0 :

k = �1 : hyperbolic symmetry

  M<0 

Q=0

Q=1.1

Q=1.5

0.5 1.0 1.5 2.0 2.5 3.0a

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Vé HaL   M=0 

Q=0

Q=1.5

Q=3.0

2 4 6 8 10a

-0.04

-0.02
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SUMMARY
We used a negative tension brane as an exotic matter.!

We found stable thin shell wormholes in several geometries and 
higher dimension.!

In general, charge and a cosmological constant are needed to 
sustain wormholes.!

However there are stable wormholes without a cosmological 
constant or charge in certain situations.!

There is no qualitative difference for stabilities when the number 
of dimensions d increases.
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