Lens statistics with GRAMORs

Galaxies and Cosmology in Light of Strong Lensing @Kavli IPMU 2014.11.19

> Masayo Morioka with Prof. Toshifumi Futamase & Alan T. Lefor Tohoku Univ. Astronomical Institute

What is "GRAMORs"

 GRAMORs = "Gravitationally highly magnified yet morphologically regular images" (Futamase et al. 1998)

• The definition of GRAMORs : 1/3<R<3 and 10<A.

R : the ratio between the length and width of image

A : the magnification parameter

• The existence of this image was expected in the end of 1990's (Williams&Lewis 1998, Futamase et al. 1998).

Previous Work

What is "GRAMORs"

 In 2009, first GRAMOR is detected at the center of cluster, MACS J1149.5+2223(Zitrin & Broadhurst 2009), and this is the only one GRAMOR that is detected so far.

(Smith et al. 2009)

The center of MACS J1149.4+2223

Source

Observed images

Images

Zitrin & Broadhurst 2009

- Which clusters are good to search for GRAMORs??
- Can we use GRAMORs for constrain the cosmological parameter??

Method

Lens Statistics

٠

• The useful tool in observational cosmology because the statistics of strong lensing event are sensitive to the cosmological parameters.

$$\frac{dN}{dz_{s}} = \sigma(z_{s})n_{s}(z_{s})\frac{cdt}{dz_{s}}$$

$$= \sigma(z_{s})n_{s}(z_{s})\frac{c}{H_{0}}\frac{dz_{s}}{(1+z_{s})\sqrt{\Omega_{0}(1+z_{s})^{3}+\Omega_{N}}}$$
Lens model
Cosmological
parameters
• Cosmological parameters

Lens model

NFW profile

- 4 set of the NFW profile parameter
- This data sets are based on LoCuSS sample.
- To investigate the feature of the cluster which make it easy to discover other GRAMORs

		M _{vir} [10 ¹⁴ h ⁻¹ M _{sun}]	C _{vir}	r _s [h¹kpc]	r _{vir} [h⁻¹kpc]
	А	3.230	5.762	217.41	1252.92
	В	6.011	4.419	350.98	1551.0
	С	7.587	4.299	387.06	1664.06
	D	12.678	3.663	537.83	1970.47

MACS J1149.5+2223

• We derived the κ -profile of MACS J1149.5+2223 from the black solid line of the figure. $\kappa = 3.5 \frac{D_{ds}}{D_s} \theta^{-0.3}$

To use GROMARs as the constraint to the cosmological parameters.
(Smith+09)

The number density of the background galaxies.

- The dependence on the NFW profile parameters
 - z_l=0.2
 - $(\Omega_{\rm m}, \Omega_{\Lambda}) = (0.27, 0.73)$

- (M_A,C_A)=(3.230,5.76)
- $(M_B C_B) = (6.011, 4.41)$
- (M_C C_C)=(7.587,4.29)
- (M_D C_D)=(12.678,3.66)

- The dependence on the NFW profile parameters
 - z_l=0.2
 - ($\Omega_{\rm m}, \Omega_{\Lambda}$) =(0.27,0.73)

- (M_A,C_A)=(3.230,5.76)
- (M_B C_B)=(6.011,4.41)
- (M_c C_c)=(7.587,4.29)
- (M_D C_D)=(12.678,3.66)

- The dependence on the redshift of the lens (z_l)
 - z_l=0.2, 0.3, 0.544, 0.7
 - (Ω_m,Ω_Λ) =(0.27,0.73)
 - Lens model : D
 - (M_D C_D)=(12.678,3.66)

- The dependence on the redshift of the lens (z_1)
 - z_l=0.2, 0.3, 0.544, 0.7
 - (Ω_m,Ω_Λ) =(0.27,0.73)
 - Lens model : D
 - (M_D C_D)=(12.678,3.66)

The expected number of GRAMORs N=2.17

 The dependence on the cosmological parameters

• z_l=0.544

- (Ω_m,Ω_Λ)
 =(0.27,0.73)
 =(1,0)
- Lens model : D
 - (M_D C_D)=(12.678,3.66)

 The dependence on the cosmological parameters in the case of MACS J1149.5+2223

• z_l=0.544

Answers (Summary)

- Which clusters are good to search for GRAMORs??
 - The massive and flatter core
 - The lens redshift $z_1 \sim 0.5 0.6$
- Can we use GRAMORs for constrain the cosmological parameter??
 - YES!!
 - The strong dependence of the expected number on the cosmological parameters.
 - The calculation for the MACS J1149 can reproduce the observed results.

Future Works

• Take into account of the source size in order to estimate the more realistic detectability.

• Estimate the actual impact of having a GRAMOR compared not having a GRAMOR.

Thank You.