Present and future of time delay cosmology

TOMMASO **TREU** (University of California Los Angeles)

Many thanks to:

- Adriano Agnello (UCLA)
- Matthew Auger (IoA)
- Roger Blandford (Stanford)
- Greg Dobler (NYU)
- Chris Fassnacht (UCD)
- Zach Greene (Columbia)
- Stefan Hilbert (Bonn)
- Leon Koopmans (Kapteyn)
 - Kai Liao (UCLA)

- Phil Marshall (Stanford)
- Xiao-Lei Meng (UCSB)
 - Sherry Suyu (ASIAA)
- Fred Courbin (EPFL)
- Georges Meylan (EPFL)
- Malte Tewes (EPFL)

• • •

Alessandro Sonnenfeld (UCSB/UCLA)

Outline

Introduction

- Why do we need more cosmological probes?
- A brief history of time (delay cosmology)
- Current state of affairs (present)
- Future outlook

The view from Earth: standard model of particle physics

The view from the Universe

How do we infer the content of the Universe?

A homogenous and isotropic universe is described by a simple metric. The scale factor a evolves according to Friedmann's equations.

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0[\Omega_R(1+z)^4 + \Omega_m(1+z)^3 + \Omega_k(1+z)^2 + \Omega_\Lambda]$$

- Z is the redshift, i.e. the ratio the size of the universe now to that at a certain time in the past
- A powerful way to determine the content of the universe is thus to infer the evolution of its size as a function of redshift. Examples
 - Supernovae Ia measure luminosity distances
 - Baryonic Acoustic Oscillations measure angular diameter distances

What is dark energy?

P=wp

Cosmological constant? w=-1 Something else? w \neq -1 [Equation of state can also evolve with cosmic time, of course w=w₀(a)+w_a(1-a)]

[compare usual w=0 for massive non-relativistic particles, w=1/3 for photons]

Planck XVI What does the CMB measure?

Cosmography with

gravitational lensing

Cosmography from time delays: how does it work?

Strong lensing in terms of Fermat's principle

Time delay distance

Shapiro delay

$$t(\vec{\theta}) = \frac{(1+z_{\rm d})}{c} \frac{D_{\rm d}D_{\rm s}}{D_{\rm ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right]$$

Excess time delay

geometric time delay

Observables: flux, position, and arrival time of the multiple images

Time delay distance in practice

 $\Delta t \propto D_{\Delta t}(z_s, z_d) \propto H_0^{-1} f(\Omega_m, w, ...)$

Steps:

- Measure the time-delay between two images
- Measure and model the potential
- Infer the time-delay distance
- Convert it into cosmlogical parameters

A brief history of time (delay cosmography)

- * 1964 Method proposed
- * 70s First lenses discovered
- * 80s First time delay measured
 - * Controversy. Solution: improve sampling
- * 90s First Hubble Constant measured
 - * Controversy. Solution: improve mass models
- * 2000s: modern monitoring; stellar kinematics; extended sources
- 2010s Putting it all together: precision measurements (6-7% from a single lens)

Cosmography with strong lenses: 4 experimental problems

- * Time delay 2-3%
- * Astrometry 10-20 mas
- * Lens potential (2-3%)
- * Structure along the line of sight (2-3%)

Cosmography with strong lenses: measuring time delays

Vanderriest et al. 1989

COSMOGRAIL: better data & better techniques Courbin's, Kumar's, Aghamousa's talks

Cosmography with strong lenses: measuring the lens potential

Schechter et al. 1997

Host galaxy reconstruction; Suyu et al. 2013

Cosmography with strong lenses: measuring the lens potential

Stellar kinematics: Treu & Koopmans 2002 Jee's talk

Cosmography with strong lenses: Structure along the line of sight

Talks by Fassnacht, Keeton, & Hilbert

???

The power of time-delays

Immediate Prospects

time delays of lensed quasars from optical monitoring
expect to have delays with a few percent error for ~20 lenses

HST cycle 20 follow up

HST archival images for lens modeling

Immediate prospects

Suyu's talk

Future Prospects

•Currently ~10 lenses have precise time-delays •Future surveys will discover and measure 100s of time delays (Oguri & Marshall 2010; Treu 2010) this decade and 1000s next decade •A time delay survey could provide very interesting constraints on dark energy

Linder 2011

100->1000 quasar lenses with time-delays. How do we do this in practice?

Roadmap. I. Find Lenses

- Carry out large imaging survey. Forecasts by Oguri & Marshall (2010)
 - DES/HSC (~1000 lensed QSOs, including 150 quads; Buckley Geer's talk)
 - LSST (~8000 lensed QSOs, including 1000 quads)
 - Euclid/WFIRST (>10000 lensed QSOs, including >1000 quads)
- Find lenses:
 - Different strategies for lensed QSOs and galaxies (Marshall+, Gavazzi+,Kubo+,Belokurov+,Kochanek +,Faure+,Pawase+,Agnello) and under development (Marshall, Agnello, Chan, More)

Roadmap. II. Follow-up

- High resolution imaging: space or Adaptive Optics
- Time delays:
 - Before LSST dedicated monitoring in the optical or radio
 - After 10 years of LSST ~400 time delays (Liao et al. 2014)
- Deflector mass modeling: redshifts and stellar velocity dispersions

Roadmap. III. Modeling

- Extended sources
 - At the moment each lens requires months of work by an expert modeler, and months of CPU (e.g. Suyu+, Vegetti+).
 - Need to get investigator time down to hours/lens
 - Massive parallelization is required (GPUs?) for efficient posterior exploration and analysis of systematics

High resolution information. Where

will it come from?

Imaging landscape after HST

Euclid/LSST will be great for **discovery but not for cosmography**

Contribution of modeling error To time delay distance

Meng, TT et al. 2014

WFIRST will be probably good enough for the brighter lenses

Meng, TT et al. 2014

Imaging landscape after 2014: Adaptive Optics

2012: 0.3-0.4 strehl at 2micron; improvements under way: PSF/TT

Marshall et al. 2007; Fassnacht

Imaging landscape after 2014: Next Generation Adaptive Optics

For strong lensing at galaxy scales interested in high-strehl small fov:
Keck-NGAO: 90% strehl at K, 60% at J (not funded yet)
Gemini,VLT, Subaru etc are all developing AO
Resources spread between large fov and high strehl

Imaging landscape after 2018: Extremely Large Telescopes

With 30-40m apertures and advanced AO, in principle one can attain 10x resolution of HST
TMT should have strehl >70% at K and >30% at Y

Imaging landscape after 2018: JWST

* JWST is 6.5m, diffraction limited beyond 2micron * At best resolution equal to HST at ~0.7micron * 0.032"/pix * Ok down to 1 micron or so, 0.65 strehl. * Resolution ~HST

The bill: imaging 1000 lenses at >=HST resolution

- Euclid/LSST not sufficient to reconstruct the potential
- HST takes a few orbits per object
 - $\sim 3000 \text{ orbits} = 1 \text{ year of HST}$
- JWST is about ten times faster, so probably this can be done in snapshot mode (if there is one).
 - ~1000 snapshots is challenging but not impossible.
- NGAO can do this for the brighter lenses, a few hours per target (comparable to HST)
- TMT will be superfast (10-15 minutes per target, assuming the PSF can be controlled; Chen's talk; maybe a month in total)
- WFIRST could give some of this imaging without any need for follow-up for the brighter lenses

Conclusions

- Gravitational lensing is a cost-effective tool for cosmography
- A concerted time-delay program can achieve sub-percent accuracy on H₀ and increase figure of merit of other dark energy experiments by x5 or more in this decade by studying ~100 lenses
- In the next decade we can go for >>100, assuming time delays will come from LSST
- Where will high resolution imaging come from?
 - JWST
 - Adaptive Optics and TMT
 - WFIRST??

