Standard theory

Multiplane Lensing: Theory and Applications

Chuck Keeton (Rutgers)

Curtis McCully (UCSB/LCOGT), Ken Wong (ASIAA), Ann Zabludoff (Arizona)
November 17, 2014

Standard geometry

Setup

Standard theory
Multiple scattering
External effects

Formalism
Single plane
One main plane
Lessons
Multiple main planes

Euclidean geometry in a plane:

$$
\begin{aligned}
D_{s} \beta & =D_{s} \theta-D_{l s} \hat{\alpha}(\theta) \\
\beta & =\theta-\alpha(\theta) \quad \text { where } \alpha=\frac{D_{l s}}{D_{s}} \hat{\alpha}
\end{aligned}
$$

Extend to FRW cosmology by using angular diameter distances.

Standard theory

Scaled gravitational potential:

$$
\nabla^{2} \phi=2 \kappa
$$

Time delay:

$$
\tau\left(\boldsymbol{x} ; \boldsymbol{x}_{s}\right)=\frac{1+z_{l}}{c} \frac{D_{l} D_{s}}{D_{l s}}\left[\frac{1}{2}\left|\boldsymbol{x}-\boldsymbol{x}_{s}\right|^{2}-\phi(\boldsymbol{x})\right]
$$

Fermat's principle $\nabla_{\boldsymbol{x}} \tau=0$ gives lens equation:

$$
\boldsymbol{x}_{s}=\boldsymbol{x}-\nabla \phi(\boldsymbol{x})
$$

Distortion/magnification from Jacobian:

$$
\boldsymbol{\mu}=\left(\frac{\partial \boldsymbol{x}_{s}}{\partial \boldsymbol{x}}\right)^{-1}=\left[\begin{array}{cc}
1-\phi_{x x} & -\phi_{x y} \\
-\phi_{x y} & 1-\phi_{y y}
\end{array}\right]^{-1}
$$

Convergence and shear

Matrix of second derivatives:

$$
\begin{aligned}
\boldsymbol{\Gamma} & =\left[\begin{array}{ll}
\phi_{x x} & \phi_{x y} \\
\phi_{x y} & \phi_{y y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\kappa+\gamma_{c} & \gamma_{s} \\
\gamma_{s} & \kappa-\gamma_{c}
\end{array}\right] \\
& =\kappa \mathbf{I}+\left[\begin{array}{cc}
\gamma_{c} & \gamma_{s} \\
\gamma_{s} & -\gamma_{c}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\kappa & =\frac{1}{2}\left(\phi_{x x}+\phi_{y y}\right) \\
\gamma_{c} & =\frac{1}{2}\left(\phi_{x x}-\phi_{y y}\right) \\
\gamma_{s} & =\phi_{x y}
\end{aligned}
$$

Standard theory Multiple scattering

Formalism

Single plane
One main plane
Lessons
Multiple main planes
Mass sheet transform

Multiple scattering

Light rays probably suffer multiple deflections:

(Figure: McCully et al. 2014)

How can we handle "external" effects?

"Direct" approach:

- find galaxies and groups along the line of sight
- build them into 3-d lens models
(Williams et al. 2006; Momcheva et al. 2006; Wong et al. 2011;
McCully thesis; McCully et al. in prep.)

Standard theory
Multiple scattering
External effects

Formalism
"Corrective" approach:

- fit for external shear
- calibrate external convergence statistically
- apply $\kappa_{\text {ext }}$ as posterior correction (mass sheet transformation)

Multiplane lensing: Formalism

Lens equation: trace light ray "backwards"

$$
\boldsymbol{x}_{j}=\boldsymbol{x}_{1}-\sum_{i=1}^{j-1} \beta_{i j} \boldsymbol{\alpha}_{i}\left(\boldsymbol{x}_{i}\right)
$$

Time delay:

$$
T=\sum_{i=1}^{s-1} \tau_{i i+1}\left[\frac{1}{2}\left|\boldsymbol{x}_{i+1}-\boldsymbol{x}_{i}\right|^{2}-\beta_{i i+1} \phi_{i}\left(\boldsymbol{x}_{i}\right)\right]
$$

Note:

$$
\beta_{i j}=\frac{D_{i j} D_{s}}{D_{j} D_{i s}} \quad \text { and } \quad \tau_{i j}=\frac{1+z_{i}}{c} \frac{D_{i} D_{j}}{D_{i j}}
$$

Tidal approximation

Most planes are perturbative, so treat them with a Taylor series:

$$
\phi_{i}(\boldsymbol{x})=\phi_{20}+\boldsymbol{\alpha}_{i 0}^{t} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{t} \boldsymbol{\Gamma}_{i 0} \boldsymbol{x}+\ldots
$$

Then:

$$
\begin{aligned}
\boldsymbol{\alpha}_{i}(\boldsymbol{x}) & =\boldsymbol{\Gamma}_{i 0} \boldsymbol{x}+\ldots \\
\boldsymbol{\Gamma}_{i}(\boldsymbol{x}) & =\boldsymbol{\Gamma}_{i 0}+\ldots
\end{aligned}
$$

If we drop higher-order terms, this defines the tidal approximation.

Single plane

Suppose we have one main lens galaxy (ℓ) plus many tidal terms, all in one plane:

$$
\begin{aligned}
\boldsymbol{x}_{s} & =\boldsymbol{x}-\sum_{i \neq \ell} \boldsymbol{\Gamma}_{i} \boldsymbol{x}-\alpha_{\ell}(\boldsymbol{x}) \\
& =\left(\mathbf{I}-\boldsymbol{\Gamma}_{\mathrm{tot}}\right) \boldsymbol{x}-\alpha_{\ell}(\boldsymbol{x})
\end{aligned}
$$

Remarks:

- external convergence and shear go into the \boldsymbol{x} term
- convergence adds as a scalar, but shear adds as a tensor:

$$
\boldsymbol{\Gamma}_{\mathrm{tot}}=\left(\sum_{i \neq \ell} \kappa_{i}\right) \mathbf{I}+\sum_{i \neq \ell}\left[\begin{array}{cc}
\gamma_{c i} & \gamma_{s i} \\
\gamma_{s i} & -\gamma_{c i}
\end{array}\right]
$$

One "main" plane, many tidal planes

Let the main lens galaxy be in plane ℓ. The mapping to this plane has a sum over foreground tidal planes:

$$
\boldsymbol{x}_{\ell}=\boldsymbol{x}_{1}-\sum_{i=1}^{\ell-1} \beta_{i \ell} \boldsymbol{\Gamma}_{i} \boldsymbol{x}_{i}=\boldsymbol{x}_{1}-\sum_{i=1}^{\ell-1} \beta_{i \ell}\left(\boldsymbol{x}_{1}-\sum_{j=1}^{i-1} \beta_{j i} \boldsymbol{\Gamma}_{j} \boldsymbol{x}_{j}\right)
$$

All terms on RHS are linear in \boldsymbol{x}, so we can write

$$
\boldsymbol{x}_{\ell}=\mathbf{B}_{\ell} \boldsymbol{x}_{1} \quad \text { where } \quad \mathbf{B}_{j}=\mathbf{I}-\sum_{i=1}^{j-1} \beta_{i j} \boldsymbol{\Gamma}_{i} \mathbf{B}_{i}
$$

Standard theory

Multiple scattering

Formalism

One "main" plane

Work through remaining planes, obtain lens equation:

$$
\boldsymbol{x}_{s}=\mathbf{B}_{s} \boldsymbol{x}_{1}-\mathbf{C}_{\ell s} \boldsymbol{\alpha}_{\ell}\left(\mathbf{B}_{\ell} \boldsymbol{x}_{1}\right)
$$

Propagation between source, main lens, and observer is described by tensors that are sums over tidal planes:

$$
\begin{aligned}
& \mathbf{B}_{j}=\mathbf{I}-\sum_{i=1, i \neq \ell}^{j-1} \beta_{i j} \boldsymbol{\Gamma}_{i} \mathbf{B}_{i} \\
& \mathbf{C}_{\ell j}=\beta_{\ell j} \mathbf{I}-\sum_{i=\ell+1}^{j-1} \beta_{i j} \boldsymbol{\Gamma}_{i} \mathbf{C}_{\ell i} \\
& \quad \text { (lenserver to } j \text {) } j \text {) }
\end{aligned}
$$

Foreground planes: Nonlinear effects

Single main plane lens equation:

$$
\boldsymbol{x}_{s}=\mathbf{B}_{s} \boldsymbol{x}_{1}-\mathbf{C}_{\ell s} \boldsymbol{\alpha}_{\ell}\left(\mathbf{B}_{\ell} \boldsymbol{x}_{1}\right)
$$

Note:

$$
\mathbf{C}_{\ell s}^{-1} \boldsymbol{x}_{s}=\mathbf{C}_{\ell s}^{-1} \mathbf{B}_{s} \boldsymbol{x}_{1}-\boldsymbol{\alpha}_{\ell}\left(\mathbf{B}_{\ell} \boldsymbol{x}_{1}\right)
$$

- first term is effectively a tidal term
- in second term, having \mathbf{B}_{ℓ} inside $\boldsymbol{\alpha}_{\ell}$ creates nonlinear effects

Can we transform away the nonlinear effects? Recall $\boldsymbol{x}_{\ell}=\mathbf{B}_{\ell} \boldsymbol{x}_{1}$:

$$
\mathbf{C}_{\ell s}^{-1} \boldsymbol{x}_{s}=\mathbf{C}_{\ell s}^{-1} \mathbf{B}_{s} \mathbf{B}_{\ell}^{-1} \boldsymbol{x}_{\ell}-\boldsymbol{\alpha}_{\ell}\left(\boldsymbol{x}_{\ell}\right)
$$

Looks nice in coordinates in the main lens plane - but we don't observe those coordinates! (Bar-Kana 1996; Schneider 1997; CRK 2003; McCully etal. 2014)

Lens galaxy at $z_{\ell}=0.3$.
Perturber of mass $10^{12} M_{\odot}$ contributes line-of-sight shear:

$$
\boldsymbol{x}_{s}=\mathbf{B}_{s} \boldsymbol{x}_{1}-\mathbf{C}_{\ell s} \boldsymbol{\alpha}_{\ell}\left(\mathbf{B}_{\ell} \boldsymbol{x}_{1}\right)
$$

Fit with a simple external shear:

$$
\boldsymbol{x}_{s}=(\mathbf{I}-\boldsymbol{\Gamma}) \boldsymbol{x}_{1}-\boldsymbol{\alpha}_{\ell}\left(\boldsymbol{x}_{1}\right)
$$

Vary source position and galaxy orientation, and look at scatter in recovered χ^{2}, h, and e.

- background perturber can be mimicked by external shear
- foreground perturber cannot

3.5e-01

Standard theory
Multiple scattering
External effects

Formalism
Single plane
One main plane
Lessons
Multiple main planes
Mass sheet transform

Lessons: I. Nonlinearity

Even if we use the tidal approximation for all perturbers, there are complications due to nonlinearity.

$$
\boldsymbol{x}_{s}=\mathbf{B}_{s} \boldsymbol{x}_{1}-\mathbf{C}_{\ell s} \boldsymbol{\alpha}_{\ell}\left(\mathbf{B}_{\ell} \boldsymbol{x}_{1}\right)
$$

Direct approach:

- all planes are built into the lens model
- planes are calibrated from our observations
- LOS matrices are computed self-consistently from a 3-d mass model

Corrective approach:

- three LOS matrices could be calibrated from simulations ... but they would be correlated
- even then, \mathbf{B}_{ℓ} must be incorporated into the modeling ... it cannot be applied as a posterior correction

Lessons: II. Whither $\kappa_{\text {ext }}$?

We argued that standard external shear/convergence does not fully account for LOS effects in the lens equation.

The same goes for time delays. Strictly speaking, applying $\kappa_{\text {ext }}$ does not capture all of the LOS effects in time delays and H_{0}.
(There is a mass sheet transformation [later], but it involves a particular rescaling of the planes. It cannot be used to transform away the planes.)

These are formal statements. How important are they in practice?

Multiple "main" planes

Perturbers that are massive and/or projected close to the lens:

- higher-order terms are non-negligible
- need to be treated explicitly

Still want to treat other planes as tidal - need hybrid approach.

Arbitrary mixture of "main" and tidal planes. Lens equation:

$$
\boldsymbol{x}_{i}=\mathbf{B}_{i} \boldsymbol{x}_{1}-\sum_{\ell \in\left\{\ell_{\mu}<i\right\}} \mathbf{C}_{\ell i} \boldsymbol{\alpha}_{\ell}\left(\boldsymbol{x}_{\ell}\right)
$$

We also worked through time delays. . .

Quantifying the importance of LOS effects

- Objective criterion for deciding whether tidal approximation is adequate, based on strength of higher-order terms.
- Scatter/bias in model results for different ways of treating external effects?

Mass sheet transformation: Traditional

Single plane: add uniform sheet and rescale galaxy

$$
\boldsymbol{\alpha}^{\prime}(\boldsymbol{x})=\lambda \boldsymbol{\alpha}(\boldsymbol{x})+(1-\lambda) \boldsymbol{x}
$$

This leads to a rescaling of the source plane:

$$
\boldsymbol{x}_{s}^{\prime}=\boldsymbol{x}-\boldsymbol{\alpha}^{\prime}(\boldsymbol{x})=\lambda \boldsymbol{x}-\lambda \boldsymbol{\alpha}(\boldsymbol{x})=\lambda \boldsymbol{x}_{s}
$$

Such a rescaling cannot be observed unless we know absolute magnifications.

Differential time delays also rescale by λ.

Generalized (I)

One main plane plus many tidal planes. Required transformation:

$$
\boldsymbol{\alpha}_{\ell}^{\prime}\left(\boldsymbol{x}_{\ell}\right)=\lambda \boldsymbol{\alpha}_{\ell}\left(\boldsymbol{x}_{\ell}\right)+(1-\lambda) \mathbf{C}_{\ell s}^{-1} \mathbf{B}_{s} \mathbf{B}_{\ell}^{-1} \boldsymbol{x}_{\ell}
$$

Differential time delays again rescale by λ.
Note: general case has shear along with a mass sheet.
Key quantity is effective tidal tensor,

$$
\boldsymbol{\Gamma}_{\mathrm{eff}}=\mathbf{I}-\mathbf{C}_{\ell s}^{-1} \mathbf{B}_{s} \mathbf{B}_{\ell}^{-1}
$$

In small-shear limit,

$$
\boldsymbol{\Gamma}_{\mathrm{eff}} \approx \sum_{i=1, i \neq \ell}^{N}(1-\beta) \boldsymbol{\Gamma}_{i}
$$

Generalized (II)

Peter Schneider (1409.0015) found a transformation that applies to multiple main planes, but it has a "curious behavior":

$$
\begin{aligned}
\boldsymbol{x}_{j}^{\prime} & =\nu_{j} \boldsymbol{x}_{j} \\
\boldsymbol{\alpha}_{j}^{\prime}\left(\boldsymbol{x}_{j}^{\prime}\right) & =\lambda \boldsymbol{\alpha}_{j}\left(\boldsymbol{x}_{j}\right)+\mathbf{G}_{j} \boldsymbol{x}_{j}
\end{aligned}
$$

where

	ν_{j}	\mathbf{G}_{j}
j odd	1	$(1-\lambda) \mathcal{D}_{j}$
j even	λ	$(1-1 / \lambda) \mathcal{D}_{j}$

With $0<\lambda<1$, we add positive density to odd planes and negative density to even planes.

Differential time delays again rescale by λ.

Lessons

Foreground perturbers create nonlinear effects.

- Image positions in the lens plane are not the same as image position on the sky.

3-d tidal approximation.

- \mathbf{B}_{ℓ} (foreground), $\mathbf{C}_{\ell s}$ (background), \mathbf{B}_{s} (all)
- effective shear/convergence, $\boldsymbol{\Gamma}_{\text {eff }}=\mathbf{I}-\mathbf{C}_{\ell s}^{-1} \mathbf{B}_{s} \mathbf{B}_{\ell}^{-1}$

Perturbers that are massive and/or projected close to the lens create higher-order terms.

- These perturbers need to be treated explicitly.

Our hybrid framework can handle an arbitrary combination of exact and tidal perturbers.

