Cosmology with double-source-plane lenses

Thomas Collett

Institute of Cosmology and Gravitation, Portsmouth

T. E. Collett & M. W. Auger (2014). Cosmological constraints from the double source plane lens SDSSJ0946+1006. *arXiv:1403.5278*

Few Probes of Dark Energy

Precise measurements

Systematics important

$$\theta_{\rm E} = \sqrt{\frac{GM(\theta_{\rm E})}{c^2}} \frac{D_{\rm ls}}{D_{\rm ol} D_{\rm os}}$$

Uncertainty in the mass model makes cosmography hard

A gravitational lens system with two background sources, each at a different redshift.

The observable: Lens Strength Ratio

Approximately the ratio of Einstein radii

Thomas Collett

Thomas Collett

The observable:

Lens Strength Ratio

$$\beta = \frac{D_{ls1}D_{s2}}{D_{s1}D_{ls2}}$$

Thomas Collett

The observable:

Lens Strength Ratio

 $= \frac{D_{ls1}D_{s2}}{D_{s1}D_{ls2}}$

No dependence on the Hubble constant!

Cross section scales rapidly with mass

 $\sigma \sim M^4$

Cross section scales rapidly with mass

 $\sigma \sim M^4$

What do we need to do?

LIGHT

Sersic

Regularized, Pixellated Sources

0.00

Modelling J0946

0.00

Thomas Collett

J0946 + WMAP prior

$$w = -0.99^{+0.27}_{-0.25}$$

C. Heymans et al.

Systematics

The Future

Evolving Dark Energy

The Future

FoM~1/(A95) : Bigger is better

The Future

Lens Population Forecasting

Lens Population Forecasting

Deflectors: SDSS $P(griz,z,r,\sigma,q)$ Sources: Cosmos P(griz,z,r)

Choi, Park & Vogeley 2007

The Future

Euclid

~10⁵ galaxy scale strong lenses (based on COSMOS)

1 in 40-80 galaxy scale lenses will be doubles (Gavazzi+ 2008)

Collett+ in prep.

$$w(z) = w_0 + w_a(1-a)$$

Red: 100 lenses, $\Omega_{k} \neq 0$ FoM = 38 $\sigma(\Omega_{k}) = 0.005$ (includes Planck prior)

Thomas Collett

$$w(z) = w_0 + w_a(1-a)$$

Red: 100 lenses, $\Omega_k \neq 0$ FoM = 38 $\sigma(\Omega_k) = 0.005$ (includes Planck prior)

Summary

$$w = -1.174_{-0.213}^{+0.197}$$

Independent systematic errors

Independent of Hubble constant

DPLSs will be competitive and complementary cosmological probes in the Euclid/LSST/SKA era

Idealizations

- Pre-subtract galaxy
- •Source flux only in masked region
- •Deterministic location of first source mass
- •Curvature regularized sources
- •Simple Mass models
- •No line of sight lensing

Intermediate source: $\theta_{E}=0.16$ " $\sigma_{v}\approx 100 \text{ kms}^{-1}$

Intermediate source: $\theta_{E}=0.16$ " $\sigma_{v}\approx 100 \text{ kms}^{-1}$

Second Source Redshift

 z_{s2}

Exotic lenses with Euclid/LSST

- ~ 40 lensed type Ia Sne
- \sim 30 DSPLs where one is an AGN
- ~ Triple source plane lenses?
- ~ Double time-delay systems?
- *These numbers have big error-bars!

Three rings from two sources?

Perturbations by the intermediate source

If completely neglected: LMC: ~1% systematic error on β MW: ~10% systematic error on β

Effect is detectable: include in the lens model.

(Sonnenfeld+ 2012, Fixed cosmology, photometric z_{s_2})

Finding more systems

Piggy-back on deep, large area surveys

Target known lenses

Target the most massive galaxies

What if we can't measure the ratio of Einstein radii to 1%?

- 1. Compound lensing the intermediate source has mass
- 2. The lens is an astrophysical object
- 3. Line of sight lensing may be significant

Thomas Collett

Constraints with 6 systems.

Pick the set of systems that provided the median constraints -0 on w.

WMAP+6 systems is ~2.5 times better than WMAP+1.

WMAP+

1 system $w_{\rm DE} = -0.99 \pm 0.27$

6 systems $w_{\rm DE} = -1.01 \pm 0.11$

<u>WMAP+BAO+Time Delay+</u> 6 systems $w_{DE} = -1.04 \pm 0.09$ 6 systems that gave the median c double source plane lenses in tal reappeared ($z_1 = 0.227$, $z_s = 0.9$ excluded by the weighted selection system 2 or 4 are likely to play a

Probing the mass profile of galaxies

Combine Einstein Radius with stellar dynamics

Fit a power-law:

Lenses are approximately isothermal (γ '=2).

(Koopmans+ 2006)

 $\gamma' = 2.078 \pm 0.027$ with an intrinsic scatter of 0.16 ± 0.02 (Auger+ 2010)