Substructure Lensing

Shude Mao

Collaborators:

Dandan Xu, Dominique Sluse, Liang Gao, Jie Wang, Carlos Frenk, Peter Schneider, Volker Springel

Nov. 18, 2014@IPMU

Outline

- I. Introduction
- II. Flux ratio Anomalies

-Statistical predictions

-Modelling observed lenses

III. Discussion & future outlook

I. Introduction: Difficulty in modelling lenses

5 quads, 4 doubles, 3 rings

Kochanek (1991) modelled 12 lenses and pointed out:

- It is pretty easy to reproduce the image positions
- But often more difficult to fit the magnifications ("wild fluctuations")

Asymptotic relations for folds & cusps

$$R_{fold} = \frac{A-B}{|A+B|} \rightarrow 0$$

Valid for any smooth models!

Observed flux ratios in cusp triples

Substantial deviations from the predicted value (0)

Saddle images are fainter than expected

Observed flux ratios in fold pairs

 \mathbf{B}

B0128+437 (Phillips et al. 2001) R_{fold}=0.33 BI555+375 (Marlow et al. 1999)

R_{fold}=0.27

Substantial deviations from predicted ratio (~0)
 Saddle images are fainter than expected

Substructures in CDM models

[e.g. Moore et al. 1999; Kauffmann et al. 1993; Klypin et al. 1999; Springel et al.; Kravstov et al.]

- 5-10% of halo mass is in substructures
- Mass function follows n(m)dm ~ m^{-1.9} dm
- $> \sim 10^4$ subhaloes are predicted with V_c>3 km/s

Nature of dark matter & Small scale power-spectrum

Warm dark matter

If we can determine the mass function and spatial distribution of subhaloes

- Constrain the nature of dark matter (cold or warm?)
- Small-scale matter power spectrum on ~kpc scale

Lensing anomalies due to substructures

> Magnification: $\Phi_{xx}, \Phi_{yy}, \Phi_{xy}$ [Φ : lens potential]

(Mao & Schneider 1998; Metcalf & Madau 2001; Chiba 2002; Keeton 2001

Bradac et al. 2001; Moustakas & Metcalf 2003; Moller, Hewitt, & Blain 2003; Metcalf & Zhao 2002; Keeton, Gaudi & Petters 2002; Evans & Witt 2003;

Dalal & Kochanek 2002; Chen, Kravtsov, & Keeton 2003; Metcalf & Amara 2012)

> Position (astrometry): $\Phi_{x_i} \Phi_{y_j}$

(e.g., Chen et al. 2007; Vegetti et al. 2010, 2012, 2014)

> Time delay: $\Phi, \Phi_{x_i} \Phi_y$

(e.g., Keeton & Moustakas 2009)

Flexions: third order derivative

(e.g., Bacon et al. 2006; Er, Ismael, Mao 2012)

Asymptotic relations for folds & cusps

II. R_{cusp} & R_{pair}: statistical predictions

Singular isothermal ellipsoid (SIE)

- + higher-order multipole amplitudes (a3, a4):
- \checkmark Einstein radius = I arcsecond
- ✓ shape parameters are drawn from SDSS galaxies (Hao, Mao et al. 2006)

> Adopt randomly orientated external shear

 \checkmark amplitude is assumed to be a lognormal distribution

> Adding in a subhalo population

- Rescale subhalo properties: r ~ M₂₀₀^{1/3}, v ~ M₂₀₀^{1/3}; characteristic over-density unchanged
- For each rescaled halo, we assume an Einasto density profile

Projected number of subhaloes

Statistical predictions

Smooth haloes

+ subhaloes in Milky Way-sized haloes

+ subhaloes in group-sized haloes (5x10¹³ M_☉)

Statistical trends

- Subhaloes induce much larger scatters.
- close pairs and triples show more deviations

Limitations

The above statistical study does not take into account

- Lens populations
- Envionmental effects
- Selection effects
- ➤ Magnification bias

An alternative is to add substructures directly into observed radio lenses

Fold and cusp radio lenses

BI933+503

B2045+265

В

M B

В

В

В

В

В

B1608+656

BI555+375

Studying substructure effects in observed radio lenses

- > Macro-model for each observed lens: SIE (main lens)+ γ_{ext} +SIS (secondary lens)
- > Adopt rescaled subhalo population from Aquarius and Phoenix simulations

observed velocity dispersion \rightarrow halo v_{max}=2^{1/2} σ

- > Selecting similar lens systems
 - Opening angle, Einstein radius and close pair (triple)
 image separations are within 10% of the observed
 values

Critical curves with substructures

Contributions from

low mass subhaloes

- Large subhaloes cause most deviations
- ➢ We can ignore subhalos below 10⁵ solar masses

Dependence on source size

- The smaller the source size, the more significant the deviations
- > Assume point source for maximum deviations

Main results

Discussions

- CDM substructures appear to under-predict the observed radio flux ratio anomalies
- Line of sight effects? (Xu et al. 2012; see talks by Inoue & Takahashi)
- > Oversimplifications in the macro-model
 - ✓ Environment?
 - SIE too simplistic (isophotal twists, deviations from ellipses, non-concentricity)?
- Why are saddle images always fainter than expected?

Future outlook: observations

- higher resolution and deeper images and more kinematical data
- Astrometric lensing (Vegetti's talk): more promising? More codes?

- > Time delay anomaly?
- Narrow-line flux ratios (talk by Nierenberg)
- TMT can probe substructures with mass lower by a factor of 100

Future outlook: theory

- Theoretically, better hydrosimulations are needed
 - ✓ to assess subhalo abundance and spatial distribution: importance of baryons
 - ✓ High-resolution group simulations needed?
 - ✓ particle number sufficient?
- better smoothing algorithm (Augulo et al. 2013)? Tracking?
- We need to better assess the line of sight effect

