"Galaxies and Cosmology in the Light of Strong Lenses" Kavli IPMU, November 2014

Finding and Using Large Samples of Lenses

Phil Marshall

KIPAC, SLAC National Accelerator Laboratory

Finding Lenses:

- Motivation
- Brief history
- Wide field imaging surveys
- Approaches to lens finding

Using Lenses:

Hierarchical inference

Finding Lenses:

- Motivation
- Brief history
- Wide field imaging surveys
- Approaches to lens finding

Using Lenses:

Hierarchical inference

Bíases: galaxy-scale optícal ímagíng

Length

Accuracy:

Accuracy:

 Large samples provide high accuracy on global parameters (cosmology, DM mass function, galaxy evolution models etc)

Accuracy:

- Large samples provide high accuracy on global parameters (cosmology, DM mass function, galaxy evolution models etc)
- Diversity informs systematic modeling by probing unknown unknowns

Accuracy:

- Large samples provide high accuracy on global parameters (cosmology, DM mass function, galaxy evolution models etc)
- Diversity informs systematic modeling by probing unknown unknowns

Accuracy:

- Large samples provide high accuracy on global parameters (cosmology, DM mass function, galaxy evolution models etc)
- Diversity informs systematic modeling by probing unknown unknowns

Discovery:

Accuracy:

- Large samples provide high accuracy on global parameters (cosmology, DM mass function, galaxy evolution models etc)
- Diversity informs systematic modeling by probing unknown unknowns

Discovery:

 Large samples will contain surprises, extreme or exotic lenses enabling new types of investigation

- CLASS (N lenses; Browne, Fassnacht)
- SLACS (N lenses; Bolton, Auger, Treu, Koopmans)
- SQLS (N lenses; Oguri, Inada)
- HST (N lenses; Moustakas, Marshall, Faure, Jackson, More, Pawase)
- SL2S (N lenses; Gavazzi, Sonnenfeld, More)
- **BELLS** (N lenses; Bolton, Brownstein)
- SPT/Herschel (N lenses; Vieira, Negrello)

N~10¹⁻²

- CLASS (N lenses; Browne, Fassnacht)
 - Mine the FIRST images, follow-up with VLA snapshot imaging
- SLACS (N lenses; Bolton, Auger, Treu, Koopmans)
 - Mine the SDSS spectra, follow-up with HST snapshot imaging
- SQLS (N lenses; Oguri, Inada)
 - Mine the SDSS catalog, follow-up with UH88 snapshot imaging
- HST (N lenses; Moustakas, Marshall, Faure, Jackson, More, Pawase)
 - Mine the images, inspect

N~10¹⁻²

- SL2S (N lenses; Gavazzi, Sonnenfeld, More)
 - Mine the CFHTLS catalogs and images, follow-up with HST/AO imaging
- **BELLS** (N lenses; Bolton, Brownstein)
 - Mine the BOSS spectra, follow-up with HST imaging
- SPT/Herschel (N lenses; Vieira, Negrello)
 - Mine the source catalogs, follow-up with HST/ALMA imaging

- CLASS (N lenses; Browne, Fassnacht)
 - Mine the FIRST images, follow-up with VLA snapshot imaging
- SLACS (N lenses; Bolton, Auger, Treu, Koopmans)
 - Mine the SDSS spectra, follow-up with HST snapshot imaging
- SQLS (N lenses; Oguri, Inada)
 - Mine the SDSS catalog, follow-up with UH88 snapshot imaging
- HST (N lenses; Moustakas, Marshall, Faure, Jackson, More, Pawase)
 - Mine the images, inspect

N~10¹⁻²

- SL2S (N lenses; Gavazzi, Sonnenfeld, More)
 - Mine the CFHTLS catalogs and images, follow-up with HST/AO imaging
- BELLS (N lenses; Bolton, Brownstein)
 - Mine the BOSS spectra, follow-up with HST imaging
- SPT/Herschel (N lenses; Vieira, Negrello)
 - Mine the source catalogs, follow-up with HST/ALMA imaging

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging
- **PS1** (10²⁻³ lenses)
 - Mine the PS1 catalogs and images, inspect, follow-up

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging
- **PS1** (10²⁻³ lenses)
 - Mine the PS1 catalogs and images, inspect, follow-up
- DES/KIDS/HSC (10³ lenses each)
 - Mine the DES/KIDS/HSC catalogs and images, inspect, follow-up

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging
- **PS1** (10²⁻³ lenses)
 - Mine the PS1 catalogs and images, inspect, follow-up
- DES/KIDS/HSC (10³ lenses each)
 - Mine the DES/KIDS/HSC catalogs and images, inspect, follow-up
- Euclid (10⁴⁻⁵ lenses)
 - Mine the Euclid catalogs and images, inspect, follow-up

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging
- **PS1** (10²⁻³ lenses)
 - Mine the PS1 catalogs and images, inspect, follow-up
- DES/KIDS/HSC (10³ lenses each)
 - Mine the DES/KIDS/HSC catalogs and images, inspect, follow-up
- Euclid (10⁴⁻⁵ lenses)
 - Mine the Euclid catalogs and images, inspect, follow-up
- LSST (10⁴ lenses)
 - Mine the LSST catalogs and images, inspect, follow-up

- SPT/Herschel/ALMA (10³ lenses)
 - Mine the Herschel/SPT catalogs, follow-up with ALMA imaging
- **PS1** (10²⁻³ lenses)
 - Mine the PS1 catalogs and images, inspect, follow-up
- DES/KIDS/HSC (10³ lenses each)
 - Mine the DES/KIDS/HSC catalogs and images, inspect, follow-up
- Euclid (10⁴⁻⁵ lenses)
 - Mine the Euclid catalogs and images, inspect, follow-up
- LSST (10⁴ lenses)
 - Mine the LSST catalogs and images, inspect, follow-up
- SKA (10⁴⁻⁵ lenses)
 - (Make and?) mine the SKA source catalogs, inspect, follow-up

Upcoming Imaging Surveys

- •PS1, DES, HSC, KIDS: ~1000 lensed quasars, 100s of group and cluster arcs
- •LSST: 10³⁻⁴ lensed quasars, 100s of lensed SNe, 10⁴ arcs and rings
- •Euclid: 10⁵ galaxy-scale lenses
- •SKA: few 10⁵ systems

key words: "Science Book"

Imaging Surveys

- 6m aperture, 10 sq deg field, 24th mag depth in 30 seconds, ugrizy
- 0.4-1.0" seeing (Cerro Pachon)
- 10 year, 18000 sq deg survey, 200 visits per object per band
- 5-10 day cadence

Euclid, SKA maging St

- •0.1-0.3" image quality, 15000 sq deg
- Approaching the 10 lenses per sq deg seen in HST images (COSMOS, HAGGLeS): sources are mostly star-forming galaxies
- Galaxy structure and evolution studies, on a heavily industrialised scale

How might we find them?

How might we find them?

*****Automated, model-based lens target and candidate selection

How might we find them?

 *Automated, model-based lens target and candidate selection
 *Crowd-sourced quality control

How might we find them?

*Automated, model-based lens target and candidate selection
*Crowd-sourced quality control
What might we do with them?

How might we find them?

*Automated, model-based lens target and candidate selection
*Crowd-sourced quality control
What might we do with them?
*Gild a selection of them

How might we find them?

*Automated, model-based lens target and candidate selection
*Crowd-sourced quality control
What might we do with them?
*Gild a selection of them
*Statistical analysis of all ze lenses
Wide-field high resolution imaging surveys will contain 100,000 strong lenses

How might we find them?

*Automated, model-based lens target and candidate selection
*Crowd-sourced quality control
What might we do with them?
*Gild a selection of them
*Statistical analysis of all ze lenses

Wide-field high resolution imaging surveys will contain 100,000 strong lenses

How might we find them?

*Automated, model-based lens target and candidate selection
*Crowd-sourced quality control
What might we do with them?
*Gild a selection of them
*Statistical analysis of all ze lenses
This talk:
* How to think about lens finding

Wide-field high resolution imaging surveys will contain 100,000 strong lenses

How might we find them?

*****Automated, model-based lens target and candidate selection *****Crowd-sourced quality control What might we do with them? **★**Gild a selection of them *****Statistical analysis of all ze lenses **This talk: ★** How to think about lens finding **★** How to think about large samples

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Multi-filter, multi-epoch data, unknown PSF LensTractor (Marshall, Agnello et al)

Robotic lensed QSO candidate detection

Classification based on explicit model comparison, Pr(d|LENS) / Pr(d|NEBULA)

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Chitah (Chan et al 2014)

Robotic lensed QSO candidate detection

Classifies based on optimized Pr(d|x,LENS) from explicit model

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Pr(d|LENS) = \int Pr(d|x,LENS) Pr(x|LENS)

The lens model parameter prior Pr(x|LENS) is non-trivial, but was sampled by OM10...

(Oguri & Marshall 2010)

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Lens Mining (Agnello et al 2014)

Supervised machine learning methods - implicit lens model (prior) enters via the training set

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

RingFinder (Gavazzi et al 2014) **PCAFinder** (Joseph et al 2014)

Subtract lens light, process residuals, provide ranked candidates for inspection

For a system to qualify as a lens candidate, it must be explained by a plausible lens model

Space Warps (Marshall, More, Verma et al)

Crowd-sourced image inspection, mental modeling. Supervised via training set (but imagination remains)

Crowd-sourced Lens Modeling

Visual inspection for candidate quality control: can we do better than "mental modeling"?

Crowd-sourced Lens Modeling

Visual inspection for candidate quality control: can we do better than "mental modeling"?

Under construction: labs.spacewarps.org

Platform for hosting web-based lens modeling code

Shareable results pages enable collaborative model exploration and optimization

Community Lens Modeling

000					(*10.5)	er Lens Databa	36				
🔺 🕨 🙆 😥 🔳 🚓 🏈 🛨 😚 http://masterlens.astro.utah.edu/index.php?site/							å	¢ Q.	Google		
↔ C cLASH + SSDF a	stro *	diversion (2)*	JPL + Everno	ote orphanlenses	skotos id	I-leonidas DF-	PanST JPLdarkandlight H	IST Cycle 20		-	
orphanlenses			Master Lens D	Database						+	
	_							campus: a	to z index 1 m	nan I directory I calendar	
Department of PHYSICS AN		TRONOMY	,					compos. a	to Lindex II		
THE UNIVERSITY OF UTAH										Search	
			INTERNAL	L COMMUNI	TY OUTR	EACH CAI	LENDAR CONTACT	US US			
The Orphan Lens Project	v 8	Search 224 Gravi	tational Lens Sy	/stems							
Master Lens Database											
Place Certs Database		Z All Discourse	Programs (*)			All Lens Kinds (*)		Download XMI, Data	hase		
Discovery Programs	Sloan Lens ACS (SLACS)										
Lens Kinds	1	BOSS Emission	n-Line Lensing S	Survey (BELLS)							
References 🕣	SDSS W/PC2 Edge-on Late-type Lens Survey (SWELLS) Sloan Lens ACS Extra (SLACSextra) Sloan Digital Sky Survey Quasar Lens Search (SDSS-QLS) UKIRT Infrared Deep Sky Survey (UKIDSS) Cosmic Lens All-Sky Survey (CLASS)					Cane -			- Minda Mi		
Database Login						All Disc	All Discovery Programs (*)				ad AML Database
Contact											
		Cosmological	Evolution Surve	y (COSMOS)	57:0	Selected 1	Gravitational Lens System: POU1131	1-1201			@ 6
Log Bulltah adu		Jodrell/VLA A	strometric Surve	ry (JVAS) Survey (ECS)		System Name	RXJ1131-1231	Filter_Lens	1	Discovery	e Image [2011-11-30 16:26:55 MST]
Tig. Chancella		Dark Energy S	Survey (DES)	50.009 (203)		Atternate Nam	10	Filter_Source	1	Kind	
		PanSTARRS (PanSTARRS) SL2S (SL2S)			Reference Fra	amo	Fluxes				
password 920	04	3623 (3623)			45:1	7.0 Equinox	J2000	mag_Lens	17.88		
First time logging on?						RA Hrs	11	mag_Source	16.74	References	ALC: NOTICE STATE
GUI FRIME HINE			CLASS	01:31:13		RA Mins	31	vdisp		CASTLES	
		0128+437			+43.58:1	RA Secs	51	vdisp error			
						RA[']	172.9625	Einstein_R ["]	3.8		
						Dec Degrees	-12	Einstein_R error [*]			
						Dec Arcmin	31	Number Images	4		
	B0218+357		JVAS	02:21:05	+35:56:1	3.7 Dec Arcsec	57	Lens Grade	A		
						Dec [1]	-12.5325	Morponology			Plot [2011-11-30 04:32:58 MST]
						7 50000	0.658	weather by			RX(1131
		0446-100	C1.466	04.48.01	.12074	Description	0.000				2
											1
		_		_	_						2 2004
											0 0 0.8° 09° 0
											-1 100
											2 = 0.295
											-2 z = 0.658
						-					

http://masterlens.astro.utah.edu/

Finding Lenses:
Motivation
Brief history
Wide field imaging surveys
Approaches to lens finding

Using Lenses: • Hierarchical inference

More lenses means higher precision

More lenses means higher precision

Requires joint analysis

- More lenses means higher precision
 - Requires joint analysis
 - Samples are imprinted with selection

More lenses means higher precision

- Requires joint analysis
- Samples are imprinted with selection
- Individual objects make up populations

More lenses means higher precision

- Requires joint analysis
- Samples are imprinted with selection
- Individual objects make up populations

More lenses means higher precision

- Requires joint analysis
- Samples are imprinted with selection
- Individual objects make up populations

Models of ensembles are hierarchical

More lenses means higher precision

- Requires joint analysis
- Samples are imprinted with selection
- Individual objects make up populations

Models of ensembles are hierarchical Extract maximum information from data

More lenses means higher precision

- Requires joint analysis
- Samples are imprinted with selection
- Individual objects make up populations

Models of ensembles are hierarchical Extract maximum information from data Fit for selection function

Simple Example: 100 Lensed Quasars
Simple Example: 100 Lensed Quasars

• Suppose we follow up 100 time delay lenses. We'll want to combine them to infer the Hubble constant

Simple Example: 100 Lensed Quasars

- Suppose we follow up 100 time delay lenses. We'll want to combine them to infer the Hubble constant
- We don't want to introduce systematic errors by using an over-simplistic density profile but if we go flexible, the prior will be important

Simple Example: 100 Lensed Quasars

- Suppose we follow up 100 time delay lenses. We'll want to combine them to infer the Hubble constant
- We don't want to introduce systematic errors by using an over-simplistic density profile but if we go flexible, the prior will be important
- Solution: make weak assumption that massive galaxies are somehow self-similar, and infer this conditional PDF (scaling relation plus scatter) simultaneously with the cosmological parameters

100 Spherical Cows

Double image configuration, spherical symmetry, known QSO positions, stellar mass to 0.1dex, radial magnification ratio (from extended source) to 1.5%

100 Spherical Cows

Double image configuration, spherical symmetry, known QSO positions, stellar mass to 0.1dex, radial magnification ratio (from extended source) to 1.5%

Joint analysis: inferring H₀

$$P(\eta|d) = P(\eta)P(d|\eta) = P(\eta)\prod_{i}\int d\psi_{i}P(d|\psi_{i})P(\psi_{i}|\eta)$$

- Global hyper-parameters: $\eta = \{\mu_*, \mu_{\rm DM}, \mu_{\gamma}, \sigma_*, \sigma_{\rm DM}, \sigma_{\gamma}, H_0\}$
- Individual lens parameters: $\psi_i = \{M_{*,i}, M_{ ext{DM},i}, \gamma_{ ext{DM},i}, R_{ ext{e},i}\}$

Inferring H₀

$$P(\eta|d) = P(\eta)P(d|\eta) = P(\eta)\prod_{i}\int d\psi_{i}P(d|\psi_{i})P(\psi_{i}|\eta)$$

Likelihood P(d|n) can be approximated as a sum over samples drawn from interim posterior:

P(d|n) =\int P(d|y) P(y|n)

= $\inf P(d|y) P(y) [P(y|n) / P(y)]$

~ $1/N \setminus sum [P(y|n) / P(y)]_k$

~ $1/N \setminus sum w_k$

MCMC sample each lens once, then sum importances in next level of inference

Inferring H₀ (and other hyper-parameters)

Inferring H₀

Uninformative priors on individual object parameters lead to bias if the objects are not unrelated

In this simple case the cosmological hierarchical inference is unbiased

Added 6 nuisance parameters to describe lens galaxy population, incurred no loss of cosmographic precision

More Hierarchical Inference Examples

• Disk and bulges in SWELLS (Brewer et al)

• Dark halo M-c in CASSOWARY (Auger et al)

Subhalo populations (Vegetti et al)

• ETG density profiles (Sonnenfeld et al)

Dark and stellar matter in ETGs

THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE ETGS OUT TO REDSHIFT 0.8

Alessandro Sonnenfeld^{1*}, Tommaso Treu^{1,2†}, Philip J. Marshall³, Sherry H. Suyu⁴, Raphaël Gavazzi⁵, Matthew W. Auger⁶, and Carlo Nipoti⁷

Draft version October 6, 2014

ABSTRACT

We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the Universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the SL2S and SLACS surveys and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar IMF across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of an NFW profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log $M_* = 11.5$ and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density are detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in larger dark matter halos.

Subject headings: galaxies: fundamental parameters — gravitational lensing —

Dark and stellar matter in ETGs

 $\gamma_{\rm DM} = \gamma_0 + N(0, \sigma_\gamma)$; $\log M_{\rm DM} = \zeta_{\rm DM}(z - 0.3) + \beta_{\rm DM}(\log M_* - 11.5) + \xi_{\rm DM}\log \Sigma_*/\Sigma_0 + \log M_0 + N(0, \sigma_{M_{\rm DM}})$

Dark and stellar matter in ETGs

 $\log \alpha_{\rm IMF} = \zeta_{\rm IMF}(z - 0.3) + \beta_{\rm IMF}(\log M_* - 11.5) + \xi_{\rm IMF}\log \Sigma_*/\Sigma_0 + \alpha_{\rm IMF,0} + N(0, \sigma_{\rm IMF})$

Phil Marshall (KIPAC) • "Galaxies and Cosmology in the Light of Strong Lensing" • Kavli IPMU • November 2014

Conclusions

- Wide field imaging surveys will contain 10-1000 times more lenses than we currently have
- Pure samples are enabled by high image quality and depth, but we'll need good software instrumentation for catalog and image mining, and significant amounts of human quality control
- Lens candidacy requires a model: explicit, implicit or mental. Each approach has pros and cons
- Accuracy: large samples have great potential for accurate galaxy evolution, dark matter and dark energy studies
- Discovery: large samples will contain novel and exotic systems with new applications