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• Presentation based on the work by Vielva, M-G and Casas 2020, in preparation

• Development of a formalism to determine the polar angle requirements for CMB B-mode experiments

• Uncertainties in the detectors polar angle propagate to the tensor-to-scalar ratio r as a bias

• The specific component separation method used to extract the cosmological signal plays a key role 

• Possible correlations among detectors are included in the formalism

• The polar angle requirements are quantified for a given bias on r

• As an illustrative example, results are provided for the LiteBIRD space mission 



Given an experiment with 𝑛 frequency channels, the CMB polarization signal is estimated as a (linear)
combination of the form
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or equivalently for the spherical harmonic coefficients
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This linear combination is typical of the ILC method (e.g. Fernandez-Cobos et al. 2016). Also an optimal parametric
fitting method, where all foreground components are recovered up to the noise limit, is expected to provide inverse
noise weighting (as it is the case, e.g., for the default method used for LiteBIRD, see Errar & Stompor (2018)).



• The rotation of the polarization axes by an angle 𝛼 transforms the intrinsic polarization pseudo-
vector 𝑄, 𝑈 in a rotated one 𝑄'() , 𝑈'() as follows:
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or equivalently for the polarization modes 𝑒%& and 𝑏%& (assuming a uniform rotation over the sky):

𝑒%&'() = cos 2𝛼 𝑒%& − sin 2𝛼 𝑏%&

𝑏%&'() = sin 2𝛼 𝑒%& + cos 2𝛼 𝑏%&

• Let us consider how the CMB polarization signal, estimated from the combination of the 𝑛 frequency
channels, changes when the polarization axes of each channel 𝜈 are rotated by an angle 𝛼!:
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and the change in the BB power spectrum would be
(assuming a null primordial EB): 𝐵%( = 𝐸% 7
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• Assuming a Gaussian likelihood approximation for the BB spectrum, the bias induced on the 𝑟
parameter is given by the following expression:
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• Considering 𝑙&01 ≈ 200 is sufficient to include all the bias effect.

• 𝐵%
+,-./,0% is the BB spectrum corresponding to the fiducial ΛCDM model for 𝑟 = 1.

• Δ𝐵% is the biased BB spectrum after subtracting the known contributions to the observed BB signal
𝐵%(: the fiducial spectra for BB and lensing and the effective noise. 𝐵%( is given by:

𝐵%( = 𝑟 𝐵%
+,-./,0% + 𝐿% ∑/(2 + 𝐸%∑2,$ + 𝑁%

3++

with 𝐸%, 𝐿% and 𝑁%
3++ are the fiducial EE, lensing and effective noise spectra resulting from the linear

combination. The ∑/(2 and ∑2,$ terms account for the impact of the polarization angle offsets of each
frequency channel and will be given below.



• The effective noise power spectrum is given in terms of the noise spectra of the 𝑛 channels, 𝑁%!,
and the weights used in the linear combination of the frequency channels 𝑤!:
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• The biased BB spectrum Δ𝐵% is given by the subtraction of the known contributions to the
observed 𝐵%(:

Δ𝐵% = 𝑟 𝐵%
+,-./,0% + 𝐿% ∑/(2 − 1 + 𝐸%∑2,$

Obviously these contributions can be removed at the power spectrum level but not from the cosmic
variance (here we do not attemp to do delensing at map level):
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with 𝑓256 accounting for the sampling variance.



• As commented above, the ∑/(2 and ∑2,$ terms account for the impact of the polarization angle
offsets of each frequency channel
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where the sum is over all the channels and 𝛼! is the polarization angle offset of channel 𝜈.

• From the above expressions, it is clear that in the limit of very small angle offsets then ∑/(2=1 and
∑2,$=0, and therefore Δ𝐵%=0 and also 𝛿' = 0 as one would expect.
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• Since typical instrumental offsets are expected to be at the degree level at most, it is worth
considering the small angle approximation. In this case the previous expression for ∑/(2 and
∑2,$ take the following form up to first order:
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and the bias in the 𝑟 parameter, 𝛿', is given by (also considering that 𝑟 𝐵%
+,-./,0% + 𝐿% ≪ 𝐸%): 
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This is a general expression that only depends on the polarization angle mismatch per channel, 𝛼!,
and the weight that each channel has to build the final CMB map, 𝑤!.



For a given experiment, a certain budget of the systematics may be assigned to the 𝑟 bias,
𝛿' , coming from the miscalibration of the detectors’ polarization angle. The problem is that there are
many possibilities to translate that budget in 𝛿' to the requirements for each channel or, even
worse, for each single detector.

Another complication is that the detector offsets can be correlated among themselves. These
correlations may come form different levels of the experimental configuration: S/C, focal plane,
wafer or detector. They can originate in e.g. the fabrication process of the wafers, cooling system,
optical elements (telescope, HWP, …) or the S/C orientation.

As commented above, the component separation method used to separate the CMB signal from
the contaminating Galactic and extragalactic emissions plays also an important role in the
determination of the requirements. If this process can be approximated as a linear combination of
the different channels, then its effect is completely included in the weights of that combination.
An additional assumption is that the foreground residuals are 𝑅% ≤ 𝐿% , as expected for future
experiments.

Requirements on the detector offsets



Different weighting schemes can be considered, in particular the following three:

Weighting schemes

• Internal Linear Combination (ILC): weights estimated by imposing minimum variance to the
CMB polarization signal derived from a linear combination of the frequency maps, following
the formalism of Fernández-Cobos et al. 2016 for polarization data.

• Inverse noise: 

• Uniform:

𝑤!,$ =
𝜎!9*
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𝑤!.$, =
1
𝑛



ILC Example of weights computed 
from simulations with constant 
spectral indices across the sky of 
the LiteBIRD frequencies.



The previous expression allows us to perform simulations, where random numbers of the 𝛼!
parameters can be drawn from a Gaussian distribution with a given dispersion 𝜎:'. However, it
is reasonable to think that the offset in one channel could be correlated with the one in another
channel. In particular, channels belonging to the same wafer or the same instrument could suffer
from such correlations due to optics, cooling system, etc. But also, there could be systematics
that affect globally to all the channels, independently of the instrument.

Denoting by 𝑪 the matrix that defines such correlations among the polarization angle offsets, 𝛼!, 
then we have:

Correlations among offsets

𝛼!(𝛼!) ≡ 𝐶!(!) = 𝜌!(!)𝜎!(𝜎!)

where 𝜌!(!) is the correlation coefficient between channel 𝜈# and channel 𝜈*.



Let us now consider the expected value of the previous expression for 𝛿'. It is easy to show
that:
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As discussed above, the choices to establish the 𝑛 values of 𝜎:' for a given 𝛿' requirement
can be very large. A natural approach to this problem is to consider that, in the sense of the
ensemble average, all the terms in the last sum of the expression for 𝛿' add evenly, i.e. that
𝜎:' = 𝑐𝑤!9#, where 𝑐 is a constant. With this assumption, an expression can be obtained to
provide the requirements for 𝛼!:
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In the case in which all channels are fully correlated, we obtain the following expression:

𝛿' ≈ 𝑛*𝑐*
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As expected, any alternative correlation scheme (i.e. with some 𝜌!(!) < 1) will imply a larger
value of 𝑐 (for a fixed requirement on 𝛿') and, therefore, will provide more relaxed values for
the requirements on the different polarization angles.

In the limit where all the 𝑛 elements are uncorrelated, then the requirements on the accuracy
needed for the knowledge of the polarization angles becomes the weakest:
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The polarization angle accuracy requirements can be divided in relative and absolute ones. The
absolute ones consist in a global offset, which accounts for a possible mismatch between the
SVM and the PLM, and three additional ones that account for the mismatch between the PLM
and each of the three focal planes, LFT, MFT and HFT. For the relative ones we may consider
different sets of detectors: 22 frequency channels, 70 wafers+frequencies, or several thousands
of individual detectors. In what follows, we will refer to the 𝑛 = 22 frequency channels that are
included in the tree focal planes of the three telescopes.

The requirements corresponding to the relative angles, for a tolerated bias of 1% of the
systematic budget of the 𝑟 parameter (0.57×109<), are estimated with the previous formula for
𝛿' . We consider the following correlation cases:

• Case 0: All the 𝑛 elements are uncorrelated, except for those in the same telescope which
are fully correlated.

• Case 1: All the 𝑛 elements are fully correlated (strongest constraints).
• Case 2: All the 𝑛 elements are partially correlated: 𝜌!(!) = 0.5 (for any 𝜈# ≠ 𝜈*), except those

within the same telescope which are fully correlated.
• Case 3: All the 𝑛 elements are uncorrelated (weakest constraints).

Application to LiteBIRD



Correlation cases considered

Case 0 Case 1

Case 2 Case 3



Requirements for relative angles

Case 0
Case 1
Case 2
Case 3



The requirements corresponding the absolute angles can be derived following similar steps as
the ones used for the relatives angles. Following the equation for 𝛿' in the small angle
approximation, the contribution to the bias of the global offset, 𝛼=, and the three additional
offsets corresponding to each of the focal plane, LFT, 𝛼>, MFT, 𝛼?, and HFT, 𝛼@, is given by:
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where 𝑛>, 𝑛?, 𝑛@ are the number of channels of the LFT, MFT and HFT, respectively, and
𝑛 = 𝑛> + 𝑛?+ 𝑛@ is the total number of channels. Taking the average of the previous equation, it
is obtained:
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As we did for the relative angles, we now make the same assumption that of the terms in the
sum of 𝛿' add evenly on average. Then, it follows that 𝜎= = 𝑐, 𝜎> = 𝑐𝑤>9#, 𝜎? = 𝑐𝑤?9#, 𝜎@ =
𝑐𝑤@9# . Considering these relations and replacing the correlations by their corresponding
correlation coefficients, we finally have:
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Requirements on the accuracy of those four offset angles can be determined by assigning e.g. 
1% of the systematics budget to the bias produced on 𝑟.

As an example, we obtain the requirements for the four absolute angles in the following three 
correlation cases:
• Case 0: No correlations.
• Case 1: The four offsets are fully correlated.
• Case 2: The global offset is uncorrelated with any of the three focal plane ones, and the latter 

ones are fully correlated. 
• Case 3: The global offset is fully correlated with any of the three focal plane ones, and the 

latter are uncorrelated. It happens that Case 3 provides the same requirements than case 2.



Requirements for absolute angles

Case 0
Case 1
Case 2
Case 3


