LiteBIRD systematics

Hirokazu Ishino
Okayama University
1st of Dec., 2020
CMB systematics and calibration focus workshop

One Minute Summary

- LiteBIRD systematics ~70 sources.
 - Individual systematic studies will be published in coming months.
- In this talk, I focused on:
 - The sky scanning strategy to cover all the sky area with uniform angle observation
 - A combination of precession and spin with the angles/rate.
 - The HWP spinning rate determination
 - Lower limit is set not to overlap the science band to the 3/5f harmonic
 - Upper limit would be the time constant.
 - The data sampling rate studies.
 - The rate giving less systematic effects but manageable with the data transfer system.
 - Cosmic ray studies
 - Glitch effects in simulation/hardware
 - Total does effects using HIMAC
 - HWP systematics
 - IP can be corrected using CMB dipole.

Systematics and Calibration

- One of the largest study groups at <u>LiteBIRD</u>
- Systematic approach for systematic uncertainties

2020/12/01

The systematic error

We quantify the systematics as a bias of the tensor-to-scalar ratio r:

$$\frac{\sum_{\ell} (2\ell+1) C_{\ell}^{\text{tens}} C_{\ell}^{\text{sys}}}{\sum_{\ell} (2\ell+1) (C_{\ell}^{\text{tens}})^2} \quad \text{assuming r=0}$$

• The systematic effects in C_l is given

$$C_{\ell}^{\text{sys}} = \sum_{i} C_{\ell}^{BB \text{ sys } (i)} + \sum_{i \neq j} \langle B_{\ell m}^{\text{sys } (i)} B_{\ell m}^{\text{sys } (j)*} \rangle$$

First term: single systematic power spectrum

Second term: correlation between two effects

 The systematic effect is an additive quantity with possible correlations.

Possible Systematic Sources

Transfer function

Electric noise

$$d(t) = g(t)H_t \otimes \left[n_s(t) + \frac{1}{2} \int dv W(v) \int d\Omega' p(t, v, \hat{n'} - \hat{n}, \hat{s})\right] + n_J(t) + \sum_a T_a(t),$$
Gain, Non-linearity

Bandpass

Extra noises:

Co-polar beam

$$p(t, \nu, \hat{n}, \hat{s}) = B_{\parallel}(t, \nu, \hat{n}, \hat{s})[I(t, \nu, \hat{n}) + \epsilon(t, \nu)(Q(t, \nu, \hat{n})\cos 2\psi(t, \nu, \hat{s}) + U(t, \nu, \hat{n})\sin 2\psi(t, \nu, \hat{s}))] + B_{\perp}(t, \nu, \hat{n}, \hat{s})[I(t, \nu, \hat{n}) - \epsilon(t, \nu)(Q(t, \nu, \hat{n})\cos 2\psi(t, \nu, \hat{s}) + U(t, \nu, \hat{n})\sin 2\psi(t, \nu, \hat{s}))],$$

Cross-polar beam

Pol. eff.

Pol. angle

s: det. pos.

Cosmic ray, 1/f etc

n: sky pos.

$$\begin{pmatrix} I(t, \nu, \hat{n}) \\ Q(t, \nu, \hat{n}) \\ U(t, \nu, \hat{n}) \end{pmatrix} = M_{\text{opt}}(\Theta) M_{\text{H}}(\Theta, \beta, \nu) \begin{pmatrix} I_{\text{in}}(t, \nu, \hat{n}) \\ Q_{\text{in}}(t, \nu, \hat{n}) \\ U_{\text{in}}(t, \nu, \hat{n}) \end{pmatrix}$$

 Θ : inc. ang.

 β : rot. ang.

List of the systematics of LiteBIRD

Sources	Details	
Gain	absolute, relative(var. in time, dets in array., inter freq.)	
Non linearity	det. res., time var. of g/tau, HWP 2f leak, data proc.	
Transfer func.	time const., digit. filter, crs. talks	
Bandpass	pos., width, shape, eff., pol. wobble, beam, HWP, outer band	
Pointing	STT(offset, var. in time), HWP wedge	
Noise	1/f, common, inter. freq., modeling, var. of loading., thermal stab.	
Cosmic ray	glitch, common mode, data proc., instr.	
Beam, Opt. syst.	Co/x pol., main, near sl., far sl., ghost., multi refl., HWP, crs. talk	
Polarization efficiency	detector, HWP(freq. dep. of retard., trans. Q/U)	
Instr. pol. w/ HWP	HWP (4f I->P, leak from nf,)	
Polarization angle	absolute, relative, HWP(Q/U mix, pos., time const.), STT	
Diff. effects w/o HWP	gain, beam, pointing, ellipticity, bandpass(CO, FG)	
Instr. pol. w/o HWP	optical system(reflections)	
Others	rad. dose effect, CO, FG	

Many contributions in LiteBIRD team, especially from younger researchers.

Mitigation of systematic effects using polarization modulation w/spinning HWPs

- Suppression of 1/f type noise to push the signal band above the knee frequency.
- Enabling us to measure polarization using a detector sensitive to a single polarization orientation, no need to differentiate a pair of detectors
- Enabling us to have uniform polarization measurement coverage in sky pixels.

Differential Bandpass effects

D. T. Hoang et al_ICAP12 (2017) 015

CMB systematics and calibration focus workshop

Mitigation of systematic effects with observation strategy and specification of the instruments.

- Uniform observation
 - coverage of observation in all the sky area
 - coverage of the observation polarization angle
 - small cross-link values: spin n cross link is defined as $\langle \cos(n\theta) \rangle^2 + \langle \sin(n\theta) \rangle^2$
- HWP design
 - to assure the transmittance/pol. eff. in the required band width
 - spinning rate under some requirements.
- Data sampling rate
 - sufficient rate under the limitation of data transferable rate

The precession angle (α) and spin angle (β) determination

$$\alpha + \beta = 95$$
 degrees

To cover all sky area with FOV $\alpha + \beta \ge 95$. To reduce the input power from the sun, the earth and the moon $\alpha + \beta \le 95$

Items	$\alpha = 65$	$\alpha = 45$	Comments
Cross link	OK	OK	Figure 1
Hit uniformity	Larger hole,	Smaller hole,	Hits concentrate more around
	small RMS	Larger RMS	the center of hole for smaller
			α option
Revisit time uni-	Large gaps	Better	Smaller hole size for small α
formity			option
Gain calibration	Not Bad	Better	\sim 10% better with small α op-
w/ CMB solar			tion
dipole			
Beam calibration	Not Bad	Good	Planet visible time twice
w/ planets			longer with small α option.

Figure 1. Cross link values as a function of α for the spins n = 1, 2, 3 and 4.

The ratio of the precession rate to the spin rate:

$$\theta = \omega_{spin}/\omega_{prec}$$

- It has been know that, if the ratio θ is simple fractions of the form p/q where p and q are relative prime, the hit/cross-link maps show visible Moire patterns.
- Martin Bucher proposed to use an irrational ratio with continued fraction representation of [9, 1, 1, ..]=9.618

$$\theta = [a_0, a_1, a_2, \dots] = a_o + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

Polarization modulation with spinning HWPs is a critical technique to mitigate systematics

K. Komatsu et al. SPIE.

High modulation efficiency in the wide frequency range is demonstrated.

Y. Sakurai, F. Columbro in SPIE, in preparation

HWP spinning rate f_h is one of the most important parameters (1)

The pre-demod. TOD is

$$d \sim e^{i\omega_s t} \sum_{n=0}^{\infty} P_k^n e^{in\omega_h}$$
 $\omega_s = v_s k$, v_s is the scan speed

After demodulation:

$$de^{-4i\omega_h t} \sim e^{i\omega_s} \sum_{n'=0}^{\infty} P_k^{|n'-4|} e^{in'\omega_h} \qquad n' = |n-4|$$

We impose

$$\omega_s = 2\pi \frac{v_s}{b} < \omega_h$$
 the smearing of the beam width b.

With the scan speed of 0.3 deg./s, we obtain

$$f_h = \frac{\omega_h}{2\pi} > 0.6Hz \left(\frac{30 \ arcmin}{beam \ width}\right)$$

pre demod tod in frequency domain \$cience band $4\omega_h$ $5\omega_h$ after demod tod in frequency domain $2\omega_h$ ω_h

T. Matsumura, H. Ishino

width For 5f discussions, K. Komatsu et al., JATIS 5(4), 044008 (2019) natics and calibration focus workshop

HWP spinning rate f_h is one of the most important parameters (2)

We impose that the roll off frequency of the transfer function to be larger than the science band $5f_h$.

$$A(5f_h) > 0.99 \text{ with } \tau = 3 \text{ msec } \to f_h < 1.5 \text{Hz}$$

$$A(f) = \frac{1}{\sqrt{1 + (2\pi f \tau)^2}}$$

We wish to suppress the 1/f noise with the condition:

With
$$f_h$$
=0.6Hz, f_{knee} < 2.4 Hz for α =1.

$$\left(\frac{f_{\text{knee}}}{4f_h}\right)^{\alpha} < 0.1$$

The current LiteBIRD baseline values are determined basically by the lower limit in the previous page.

LFT	MFT	HFT
46 rpm	39 rpm	61 rpm
=0.77Hz	=0.65Hz	=1.0Hz

Data sampling rate f_s systematic effects

- 140 GHz sky maps CMB+FG only, one year observation
- Top hat window function in time domain is assumed in this calculation.

The current baseline is 20Hz sampling

-> 18 GB per day, manageable with current data transfer system.

Cosmic ray effect is one of the most important systematics in LiteBIRD

0.7810 0.7805 0.7800 0.7795 0.7790 0.7785 0.7780 0.7775

t (minutes)

- Simulation studies:
 - CR rate/energy, TES response, on board data process with down-sampling and filters, TOD generation, sky map and CI estimation.
- Hardware studies:
 - TES irradiation tests on going.
- High rate sampling (>1kHz) for a short time period is considered to characterize the CR glitches.

S. Stever, T. Ghigna, M. Tominaga, M. Tsujimoto et al., SPIE, JCAP

Cosmic ray integrated dose effect tests using HIMAC

http://www.nirs.go.jp/rd/collaboration/himac/ outline.shtml

- 160MeV proton beam irradiation tests (2014-17)
 - up to 100 krad
 - Sapphire, Silicon, PP, TES, MKID, LED, YBCO
 - No degradation is found for all the specimens.
- Next series of tests will start in JFY 2021.

HWP systematics

One of the systematic effects: Instrumental Polarization (IP) at 4f

$$M(\psi) = \begin{pmatrix} M_{II} & M_{QI} & M_{UI} & M_{VI} \\ M_{IQ} & M_{QQ} & M_{UQ} & M_{VQ} \\ M_{IU} & M_{QU} & M_{UU} & M_{VU} \\ M_{IV} & M_{QV} & M_{UV} & M_{VV} \end{pmatrix}$$

- The HWP IP is expected to happen in the order of 10⁻⁵.
 - Estimated by H. Imada.
- G. Patanchon points out the effect can be calibrated and corrected using CMB dipole, as shown in right figure.
- Other HWP systematics will be presented by S. Giardiello.
- Preparing for publication.

G. Patanchon