Requirements for future CMB satellite missions: photometric and band-pass response calibration

Tommaso Ghigna

CMB systematics and calibration focus workshop Virtually @ Kavli IPMU 30/11-3/12/2020

Outline/Summary:

- Photometric calibration and bandpass requirements for future satellite mission:
 - Based on the recently published <u>T. Ghigna et al JCAP11(2020)030</u> (with T. Matsumura, G. Patanchon, H. Ishino and M. Hazumi)
 - Formalism w/ and w/o HWP
 - Example analysis applied to LiteBIRD:
 - requirements driven by the high frequency channels (see also Max's talk about SO)
 - gain requirements below percent level
 - resolution requirement ≤ 1 GHz
- CO line contamination:
 - Contamination level w/ and w/o HWP
 - Future missions: to notch or not to notch?

Why bandpass?

100 GHz channels

Planck 2013 results. IX. HFI spectral response

Dust leakage

CO leakage

Planck 2018 results.
III. High Frequency
Instrument data
processing and
frequency maps

Bandpass - I→P

Hoang et al. 2017

- Galactic leakage reduced by the number of detectors as $1/N_{det}$ in ℓ -space if we assume uncorrelated uncertainty of the transmission around a mean value.
- Galactic leakage suppressed by an ideal continuously rotating HWP.

$$\begin{pmatrix} \delta Q \\ \delta U \end{pmatrix} = \delta I_{fg} \begin{pmatrix} \langle \cos 2\varphi \rangle \\ \langle \sin 2\varphi \rangle \end{pmatrix}$$

Differential systematics

Simple signal model for polarization sensitive detector:

$$d(t) = \frac{s(t)}{2} \int d\nu \, \frac{\lambda^2}{\Omega_b} \mathbf{G}(\mathbf{v}) \int d\Omega B(\nu, \Omega) \{ I(\nu) + \varepsilon(\nu) [Q(\nu) \cos 2\varphi + \dots + U(\nu) \sin 2\varphi] \}$$

Single sky pixel signal for each detector averaged over overall mission:

$$d_a = I + Q\langle\cos 2\varphi_a\rangle + U\langle\sin 2\varphi_a\rangle + S$$
In case of a mismatch between $d_b = I + Q\langle\cos 2\varphi_b\rangle + U\langle\sin 2\varphi_b\rangle$

two orthogonal detectors

Demodulate to reconstruct sky signal ($\varphi_a = \varphi_b + \pi/2$):

$$\Delta d = \frac{1}{2}(d_a - d_b) = Q\langle\cos 2\varphi_a\rangle + U\langle\sin 2\varphi_a\rangle + S$$

Sky signal:
$$\begin{pmatrix} S \\ Q \\ U \end{pmatrix} = \begin{pmatrix} 1 & \langle \cos 2\varphi \rangle & \langle \sin 2\varphi \rangle \\ \langle \cos 2\varphi \rangle & \langle \cos^2 2\varphi \rangle & \langle \sin 2\varphi \rangle \langle \cos 2\varphi \rangle \\ \langle \sin 2\varphi \rangle & \langle \sin 2\varphi \rangle \langle \cos 2\varphi \rangle & \langle \sin^2 2\varphi \rangle \end{pmatrix}^{-1} \begin{pmatrix} \Delta d \\ \Delta d \langle \cos 2\varphi \rangle \\ \Delta d \langle \sin 2\varphi \rangle \end{pmatrix}$$

$$\langle \sin 2\varphi \rangle$$

$$\langle \sin 2\varphi \rangle \langle \cos 2\varphi \rangle$$

$$\langle \sin^2 2\varphi \rangle$$

$$\Delta d \langle \cos 2\varphi \rangle$$

$$\Delta d \langle \sin 2\varphi \rangle$$

Polarbear 2 - Inoue et al. 2016

Systematics – mitigation with HWP

Kusaka et al. 2014

- Half-Wave Plate is becoming a popular solution to mitigate systematics by modulating the sky polarized signal.
- Ground experiments: reduce 1/f noise due to atmosphere \rightarrow possible to increase sensitivity at low ℓ .
- Instrumental polarization can be suppressed if HWP is first optical element.
- No need to differentiate detectors to reconstruct Q and U → detector mismatch effects.

Modulated signal:

$$d = I + \varepsilon Re\{(Q + iU)e^{-i4\chi}\}$$

Need to track χ during the observation!

Demodulated signal obtained by multiplying the modulated signal by its complex conjugate.

Systematics – mitigation with HWP

Single sky pixel signal with HWP for each detector

averaged over overall mission:

$$d = I + Q\langle\cos(4\chi - 2\varphi)\rangle + U\langle\sin(4\chi - 2\varphi)\rangle$$

Demodulate to reconstruct sky signal:

$$d = I + Q\langle\cos(4\chi - 2\varphi)\rangle + U\langle\sin(4\chi - 2\varphi)\rangle$$

$$d\langle\cos(4\chi - 2\varphi)\rangle = I\langle\cos(4\chi - 2\varphi)\rangle + Q\langle\cos^2(4\chi - 2\varphi)\rangle + U\langle\sin(4\chi - 2\varphi)\rangle\langle\cos(4\chi - 2\varphi)\rangle$$

$$d\langle\sin(4\chi - 2\varphi)\rangle = I\langle\sin(4\chi - 2\varphi)\rangle + Q\langle\sin(4\chi - 2\varphi)\rangle\langle\cos(4\chi - 2\varphi)\rangle + U\langle\sin^2(4\chi - 2\varphi)\rangle$$

Hill et al. 2016

Sky signal:

$$\begin{pmatrix} I \\ Q \\ U \end{pmatrix} = \begin{pmatrix} 1 & \langle \cos(4\chi - 2\varphi) \rangle & \langle \sin(4\chi - 2\varphi) \rangle \\ \langle \cos(4\chi - 2\varphi) \rangle & \langle \cos^2(4\chi - 2\varphi) \rangle & \langle \sin(4\chi - 2\varphi) \rangle \langle \cos(4\chi - 2\varphi) \rangle \\ \langle \sin(4\chi - 2\varphi) \rangle & \langle \sin(4\chi - 2\varphi) \rangle & \langle \sin^2(4\chi - 2\varphi) \rangle \end{pmatrix}^{-1} \begin{pmatrix} d \\ d\langle \cos(4\chi - 2\varphi) \rangle \\ d\langle \sin(4\chi - 2\varphi) \rangle \end{pmatrix}$$

Systematics – bandpass

- Let's focus only on bandpass: $d = \int dv \, G(v) \{ I(v) + \varepsilon(v) [Q(v) \cos 2\varphi(v) + U(v) \sin 2\varphi(v)] \}$
- Sky signal: CMB + fg (dust, synchrotron, ...) $S = (I, Q, U) \mapsto S = S_{cmb} + S_d + S_s + \cdots$
- Integrating and writing sky components explicitly (photometric calibration):

$$\begin{split} d(\nu_0) &= \boldsymbol{g}(I_{cmb}(\nu_0) + \boldsymbol{\gamma_d}I_d(\nu_0) + \boldsymbol{\gamma_s}I_s(\nu_0) + G(\nu_{co})I_{co}) + \cdots \\ & \dots + \boldsymbol{g}\varepsilon[(Q_{cmb}(\nu_0) + \boldsymbol{\gamma_d}Q_d(\nu_0) + \boldsymbol{\gamma_s}Q_s(\nu_0) + G(\nu_{co})Q_{co})\cos 2\varphi + \cdots \\ & \dots + (U_{cmb}(\nu_0) + \boldsymbol{\gamma_d}U_d(\nu_0) + \boldsymbol{\gamma_s}U_s(\nu_0) + G(\nu_{co})U_{co})\sin 2\varphi] \end{split}$$

 v_0 =effective central frequency of the given band

Calibration in space

- Dipole calibration: \sim 3 mK signal due to motion of the Sun with respect to LSS.
 - We obtain g factor by fitting the data (it does not depend on bandpass knowledge).

Planck early results. VI.
The High Frequency
Instrument data processing

- Sensitive mostly to detector stability over dipole modulation period.
- Color correction (dust and synchrotron have different spectral shapes):

$$\gamma_{d} = \frac{I_{cmb}(\nu_{0})}{I_{d}(\nu_{0})} \frac{\int d\nu G(\nu)I_{d}(\nu)}{\int d\nu G(\nu)I_{cmb}(\nu)}; \quad \gamma_{s} = \frac{I_{cmb}(\nu_{0})}{I_{s}(\nu_{0})} \frac{\int d\nu G(\nu)I_{s}(\nu)}{\int d\nu G(\nu)I_{cmb}(\nu)} \Longrightarrow \delta\gamma = \frac{\gamma_{\Delta\nu} - \gamma_{0}}{\gamma_{0}}$$

Depends on the bandpass shape resolution $\Delta \nu$. Bandpass measurement requirements.

• If we don't calibrate on dipole we need to rethink this definition given the spectrum of the calibrator. If the calibrator is not known as well as the dipole the uncertainty of g will likely dominate the color correction uncertainty.

Bandpass Requirements

```
d(\nu_{0}) = \mathbf{g}(I_{cmb}(\nu_{0}) + \gamma_{d}I_{d}(\nu_{0}) + \gamma_{s}I_{s}(\nu_{0}) + G(\nu_{co})I_{co}) + \cdots
... + \mathbf{g}\varepsilon[(Q_{cmb}(\nu_{0}) + \gamma_{d}Q_{d}(\nu_{0}) + \gamma_{s}Q_{s}(\nu_{0}) + G(\nu_{co})Q_{co})\cos 2\varphi + \cdots
... + (U_{cmb}(\nu_{0}) + \gamma_{d}U_{d}(\nu_{0}) + \gamma_{s}U_{s}(\nu_{0}) + G(\nu_{co})U_{co})\sin 2\varphi]
```

- $I \rightarrow P$ leakage (studied by Hoang et al. 2017 for CMB channels):
 - Without HWP. Foregrounds I to P leakage is non negligible. Bandpass measurement requirement to minimize the effect for channel 140 GHz: $\Delta \nu \sim 0.2$ GHz.
 - With HWP. Foregrounds I to P leakage is suppressed by efficiently choosing the scanning strategy and the presence of a continuously rotating polarization modulator.
- P → P leakage or Pol. miscalibration:
 - Without HWP. Dominant term is I to P leakage, so requirement is driven by previous point.
 - With HWP. Next slides...

Bandpass Requirements

Sky model = CMB + Dust + Synchrotron (constant spectral parameters) + **noise**.

Ideally:
$$\begin{pmatrix} I \\ Q \\ U \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} I_{in} \\ 2Q_{in} \\ 2U_{in} \end{pmatrix} = \begin{pmatrix} I_{in} \\ Q_{in} \\ U_{in} \end{pmatrix}$$

Calibration uncertainty:
$$\begin{pmatrix} I \\ Q \\ U \end{pmatrix}_i = [\mathcal{G}(\mu = 1, \sigma = \Delta_g)] \begin{pmatrix} I_{\text{in}} \\ Q_{\text{in}} \\ U_{\text{in}} \end{pmatrix}_i$$

	1 40 2 50	12 (30%)	64	
	2 50		04	39.76
		15 (30%)	64	25.76
•	3 60	14 (23%)	64	20.69
4	4 68	16 (23%)	208	12.72
	5 78	18 (23%)	208	10.39
(6 89	20 (23%)	208	8.95
7	7 100	23 (23%)	530	6.43
8	8 119	36 (30%)	632	4.30
(9 140	42 (30%)	530	4.43
1	0 166	50 (30%)	488	4.86
1	1 195	59 (30%)	640	5.44
1	2 235	71 (30%)	254	9.72
1	3 280	84 (30%)	254	12.91
1	4 337	101 (30%)	254	19.07
1	5 402	92 (23%)	338	43.53

Sugai et al 2020

What is the color correction accuracy we need to achieve in order to recover the tensor-to-scalar ratio with minimal bias?

- Target: $\delta_r \le 5.7 \times 10^{-6}$ (Small compared to the target sensitivity $\sigma_r \sim 0.001$). See Hirokazu's talk.
- If there is no correlation among bandpass uncertainties we can then find the single detector requirement as $\delta_q = \Delta_q \sqrt{N_i}$, where N_i is the number of detectors in frequency channel i.

Bandpass Requirements

1

Mis-calibrate one frequency channel per time

Parametric component separation (FgBuster thanks to J. Errard and D. Poletti)

Find requirement per band and per detector

Produce mis-calibrated maps at all frequencies using the requirements found at step 2

Re-run the analysis to determine the combined bias

$$\text{Likelihood:} -2ln\mathcal{L}(r|\hat{C}_{\ell}^{BB}) = (2\ell+1)f_{sky}\left[\frac{\hat{C}_{\ell}^{BB}}{rC_{\ell}^{GW}+C_{\ell}^{L}+N_{\ell}^{BB}} + \ln(rC_{\ell}^{GW}+C_{\ell}^{L}+N_{\ell}^{BB})\right] \Rightarrow ln\mathcal{L} = \sum_{\ell min}^{\ell max} ln\mathcal{L}(r|\hat{C}_{\ell}^{BB})$$

100 realizations for a given Δ_g

(here showing only 1 to make it readable)

	v_i (GHz)	Δ_g	δ_g	v_i (GHz)	Δ_g	δ_g	v_i (GHz)	Δ_g	δ_g
	40	2.5×10^{-3}	2.0×10^{-2}	89	5.0×10^{-3}	7.2×10^{-2}	195	2.5×10^{-4}	0.6×10^{-2}
	50	7.5×10^{-3}	6.0×10^{-2}	100	1.0×10^{-3}	2.3×10^{-2}	235	5.0×10^{-4}	0.8×10^{-2}
	60	7.5×10^{-3}	6.0×10^{-2}	119	1.0×10^{-3}	2.5×10^{-2}	280	1.0×10^{-3}	1.6×10^{-2}
	68	7.5×10^{-3}	$\textbf{10.8}\times\textbf{10}^{-2}$	140	2.5×10^{-3}	5.7×10^{-2}	337	1.0×10^{-4}	0.16×10^{-2}
١ [78	1.0×10^{-2}	$14.4 \times \mathbf{10^{-2}}$	166	7.5×10^{-4}	1.6×10^{-2}	402	1.0×10^{-4}	0.18×10^{-2}

	v_i (GHz)	Δ_g	δ_g	v_i (GHz)	Δ_g	δ_g	v_i (GHz)	Δ_g	δ_g
	40	2.5×10^{-3}	2.0×10^{-2}	89	5.0×10^{-3}	7.2×10^{-2}	195	2.5×10^{-4}	0.6×10^{-2}
	50	7.5×10^{-3}	6.0×10^{-2}	100	1.0×10^{-3}	2.3×10^{-2}	235	5.0×10^{-4}	0.8×10^{-2}
	60	7.5×10^{-3}	6.0×10^{-2}	119	1.0×10^{-3}	2.5×10^{-2}	280	1.0×10^{-3}	1.6×10^{-2}
ا ا	68	7.5×10^{-3}	$\textbf{10.8}\times\textbf{10}^{-2}$	140	2.5×10^{-3}	5.7×10^{-2}	337	1.0×10^{-4}	0.16×10^{-2}
	78	1.0×10^{-2}	14.4×10^{-2}	166	7.5×10^{-4}	1.6×10^{-2}	402	1.0×10^{-4}	0.18×10^{-2}

 $\delta_r \leq 5.7 imes 10^{-6}$

$$\gamma_d = \frac{I_{cmb}(\nu_0)}{I_d(\nu_0)} \frac{\int d\nu \, G(\nu) I_d(\nu)}{\int d\nu \, G(\nu) I_{cmb}(\nu)} \longrightarrow \delta \gamma = \frac{\gamma_{\Delta \nu} - \gamma_0}{\gamma_0}$$

Most stringent requirement is coming from channel 337 GHz (dust dominated): $\delta_g \sim 0.001$.

Max statistical uncertainty for FTS measurement from **F. Matsuda et al 2019** \sim 2%

CO: should we notch?

• Carbon Monoxide line emission corresponding to rotational transitions: J 1 \rightarrow 0 at \sim 115 GHz (and \sim 110 GHz), J 2 \rightarrow 1 at \sim 230 GHz (and \sim 220 GHz), J 3 \rightarrow 2 at \sim 345 GHz (and \sim 330 GHz) ...

Planck 2013 results, XIII. Galactic CO emission

Resonant stub to filter out the contaminated frequencies:

CO line notching (w/o HWP) – I to P

How much leakage can we tolerate? Do we need to notch?

I to P leakage due to bandpass mismatch, could be a big issue particularly in the case of no HWP:

$$\Delta d = Q\cos(2\varphi) + U\sin(2\varphi) + \frac{1}{2}I\Delta \qquad \qquad \begin{pmatrix} Q \\ U \end{pmatrix}_{leak} = I_{co}\Delta \begin{pmatrix} \langle \cos(2\varphi) \rangle \\ \langle \sin(2\varphi) \rangle \end{pmatrix}$$

$$\delta = \Delta \times \sqrt{N_{det}}$$

If notch filters distributed randomly around v_{CO} .

Absolute requirement:

 $\delta < 25\%$ translate to $\Delta \nu < 1.0$ GHz (half width at 25% level).

Relative requirement:

 $\Delta \nu < 2.0$ GHz.

CO line notching (w HWP) – I to P

Continuously rotating HWP mitigates I to P leakage thanks to improved cross-linking.

- No effect detected up to 100% leakage.
- Requirement maybe coming from CO intrinsic polarization.

Cross linking maps in gal coordinated for LiteBIRD scan strategy with and without HWP.

CO line notching – Intrinsic Polarization

How much leakage can we tolerate? Do we need to notch?

In first approximation no difference between wHWP and w/oHWP cases. w/oHWP case dominated by I to P leakage.

$$\binom{Q}{U}_{leak} = \begin{pmatrix} \Delta Q_{CO} \left\langle \frac{1}{2} + \frac{1}{2} \cos 4\varphi \right\rangle^{-1} \left\langle \frac{1}{2} + \frac{1}{2} \cos 4\varphi \right\rangle \\ \Delta U_{CO} \left\langle \frac{1}{2} - \frac{1}{2} \cos 4\varphi \right\rangle^{-1} \left\langle \frac{1}{2} - \frac{1}{2} \cos 4\varphi \right\rangle \end{pmatrix} \approx \binom{\Delta Q_{CO}}{\Delta U_{CO}}$$

Intrinsic polarization maps from Giuseppe Puglisi: (assumption $P_{CO} < 1\% I_{CO}$).

To inject the leakage I'm using only LFT (22 Hz sampling rate) cross link maps for simplicity, considering 3 years of observation.

- Small effect up to 100% leakage!
- Is the assumption of 1% polarization correct?

Back up slides

Non ideal HWP

with Kunimoto Komatsu

Retarder

$$\Gamma = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \delta & -\sin \delta \\ 0 & 0 & \sin \delta & \cos \delta \end{pmatrix}$$

Rotator

$$R(\rho) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos 2\rho & -\sin 2\rho & 0\\ 0 & \sin 2\rho & \cos 2\rho & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Retardance: $\delta = 2\pi \frac{\Delta n \, d \, v}{c}$

• For sapphire $n_o \sim 3.047$ and $n_e \sim 3.361$

Stack of n birefringent plates: $\Gamma_{stack} = \prod_{i=1}^{n} R(-\chi_i) \Gamma(\delta_i) R(\chi_i)$

$$\phi(\nu) = \frac{1}{4} \tan^{-1} \left(\frac{\Gamma_{QU} + \Gamma_{UQ}}{\Gamma_{QQ} - \Gamma_{UU}} \right)$$

Komatsu et al. 2019

Non ideal HWP

with Kunimoto Komatsu

$$d = \int d\nu G(\nu) \{ I(\nu) + \boldsymbol{\varepsilon}(\boldsymbol{\nu}) [Q(\nu)\cos(4\chi - 2\varphi + 4\boldsymbol{\phi}(\boldsymbol{\nu})) + U(\nu)\sin(4\chi - 2\varphi + 4\boldsymbol{\phi}(\boldsymbol{\nu}))] \}$$

For total intensity γ -factor does not change. However for Q and U becomes more complicated:

$$\gamma_i^{cos} = \frac{I_{cmb}(\nu_0)}{I_d(\nu_0)} \frac{\int d\nu \, G(\nu) \varepsilon(\nu) S_i(\nu) \cos 4\phi(\nu)}{\int d\nu \, G(\nu) I_{cmb}(\nu)}$$

$$\gamma_i^{sin} = \frac{I_{cmb}(\nu_0)}{I_d(\nu_0)} \frac{\int d\nu \ G(\nu) \varepsilon(\nu) S_i(\nu) \sin 4\phi(\nu)}{\int d\nu \ G(\nu) I_{cmb}(\nu)}$$

In the end we can rewrite in the usual form:
$$d(\nu_0) = I'(\nu_0) + Q'(\nu_0) \langle \cos(4\chi - 2\varphi) \rangle + U'(\nu_0) \langle \sin(4\chi - 2\varphi) \rangle$$