

Polarization Modulator Signal Phase Variation: The Simons Observatory Case

Kevin T. Crowley UC Berkeley B-Mode Systematics Workshop Kavli IPMU 12/1/2020

Overview

- Simons Observatory/SAT
- Systematic: shifts in effective polarization angle
- Modeling the shift
- Setting requirements

- Mitigations
 - Marginalization
 - Averaging over observing seasons
- Work to come

Intro to SO

- LAT: Crossed-Dragone, 6m primary aperture
 - 1.3 arcmin resolution @ 150 GHz
- SAT x3: Three-lens refractor, 42 cm aperture
 - 17 arcmin resolution @ 150 GHz
- Six bands spanning 27 280 GHz

Sited on Chajnantor plateau in Atacama Desert, Chile @ 5200 m

SAT instrument

• 2 PT-420 pulse tubes, Bluefors SD-400 dilution refrigerator

Elevation

- Operating temperature: 100 mK
- Three-lens silicon optics + 1 K Lyot stop
- Cryogenic half-wave plate (HWP) + superconducting magnetic bearing
 - see P. Ashton talk: "Instrumentation" session
- Antenna, coupling & detector heritage from Simons Array & ACT
 - Dual polarization, dichroic pixels
 - Transition-edge sensor (TES) **bolometers**

Half-wave plate review

- Birefringent material w/ tuned thickness
 - χ = extraordinary axis (unique index in crystal)
- Ideal HWP response:
 - Incoming linear polarization rotated by -2 θ_{in}
 - Only at single mm-wave frequency
- Multiple HWPs improves bandwidth (Pancharatnam 1955)
 - Three-stack sapphire design for SO

HWP as polarization modulator

- Constant rotation $f_{rot} = d\chi/2\pi dt$
- Output polarization angle @ 2 f_{rot}
 - Detector records @ 4 f_{rot} polarimeter senses power
- W/o HWP:

 $d_{raw}(t) = I(t) + Q(t) \cos(2\psi) + U(t) \sin(2\psi)$

• W/ HWP:

 $d_{mod}(t) = I(t) + Q(t) \cos(2\psi - 4\chi) + U(t) \sin(2\psi - 4\chi)$

- Polarization signal now lifted above atmospheric \mathbf{f}_{knee}

SO detectors: the basics

- TES devices: "relative power"
 - $\delta P \rightarrow \delta T \rightarrow \delta R \rightarrow \delta I$
- Bolometer thermal time constant $\tau = C/G$
 - Measure in situ $\tau_{eff} < \tau$
- Acts as single-pole filter on TES current signal
 - Response to HWP pol signal has phase arctan(4 $(2\pi f_{rot}) \tau_{eff}$) = arctan(4 f_{rot} / f_{3dB})
 - *f*_{3dB} calibration tool:
 <u>Simon et al.</u> (2014)

Shifts in f_{3dB}

- SO studies f_{3dB} before/after each observing scan
 - Correct for dominant phase
- In between:
 - Changing optical loading changes TES response
- Loading from precipitable water vapor (PWV) in atmosphere
- Study APEX radiometer data over season-long timescale
 - Local to Chajnantor plateau
 - Typical peak-to-peak excursion
 @ 84th perc: 0.5 mm

Generating requirements by SO frequency band

$$\Delta f_{3dB} = \text{change assuming } \Delta PWV$$
Size of nonlinearity coefficient
roughly consistent with τ_1 in
Takakura et al. POLARBEAR-1
$$\Delta \psi' = \frac{1}{2} \left(\arctan\left(\frac{f_{\text{sig}}}{f_{3dB} + \Delta f_{3dB}}\right) - \arctan\left(\frac{f_{\text{sig}}}{f_{3dB}}\right) \right)$$
For 2D range of initial
(f_{3dB} , optical loading)
determine effective angle
shift $\Delta \psi'$

$$\int \text{Find minimum } f_{3dB} \text{ which}$$

satisfies requirements on
*bias to r
for SO baseline science case
($\Delta r = 2 \times 10-4$)
$$\int \text{Extimate change in} \int \Phi^{\text{Find}} \Phi^{$$

Results: effective polarization angle shift

Difficult band: 225 GHz (dust constraints)

11

Mitigating factors

- Self-calibration of detector polarization angle ψ
 - Marginalize over ψ uncertainty
- Consider average over many hours of observing in 1 sky map
- Can model time constant drift
 - Time-dependent detector ψ exists in mapmaking for parallactic angles

SO case:

Successful self-calibration (using *EB* = 0) w/o and w/ foreground EB marginaliztion

 Δg , Δv : bandpass gain & bandcenter $\Delta \vartheta_0$ = map-level polarization angle shift

Mitigating factors

- Self-calibration of detector polarization angle $\boldsymbol{\psi}$
 - Marginalize over ψ uncertainty
- Consider average over many hours of observing in 1 sky map
- Can model time constant drift
 - Time-dependent detector ψ exists in mapmaking for parallactic angles

Observation averaging

- W/ averaging:
 - Systematic becomes "polarization angle jitter"
- Reduced polarization efficiency per detector
 - Can be calibrated in final comparison w/ Planck
- Possible spurious B-modes
 - Further study on array uniformity, f_{3dB} calibration needed

500 random draws of Δ PWV Gaussian σ = 0.1 mm Initial PWV = 1.5 mm

Future studies

148 GHz Band

- Per-detector averaging over seasons
 - Randomized optical loading/ bolometer parameters
 - Miscalibration
- Requirements on SAT time constant calibration error
- Inclusion of effect in ongoing SO systematic studies (time-domain simulations)

Summary

- SO SAT features rotating half-wave plate
 - Detector f_{3dB} shift → effective polarization angle shift
- SO TES f_{3dB} targets meet requirements in conservative study
 - In nearly all optical loading conditions
- Effect will be studied further in SO systematics simulation suite

- Various mitigations also exist
 - SO will self-calibrate using EB nulling & marginalize over miscalibrations
 - Stochastic ∆PWV will average down over multiple observations

Thank you!

BACKUP

Time trend of 1000 APEX hrs

19

Summary of SAT f_{3dB requirements}

ν_b (GH	z) SAT f_{3dB}	(Hz) LAT f_{3dB} (Hz)
27	5.52	19.5
40	4.85	28.2
94	35.0	65.5
148	104.9	102.9
225	365.2	144.0
280	141.0	160.0

Typical shift values for SO detectors

$\nu_b (\text{GHz})$	$\Delta \psi'$ fixed (°)	$\Delta \psi'$ average spread (°)	$\Delta \phi_0$ (°)
27	0.03 ± 0.002	0.008	1.75
40	0.01 ± 0.005	0.002	1.75
94	0.04 ± 0.008	0.01	0.2
148	0.09 ± 0.03	0.03	0.2
225	$0.2^{+0.25}_{-0.08}$	0.06	0.4
280	0.1 ± 0.04	0.03	0.4

148 GHz band: simulation statistics

Min LAT *f*_{3dB} 166 Hz

225 GHz band: simulation statistics

245 Hz

