B-mode forecast for CMB-Bharat proposal

On behalf of the CMB-Bharat collaboration

Debabrata Adak

IUCAA

Kavli IPMU, Japan Nov 30 - Dec 3

Planck collaboration XI (2018)

PICO (NASA?)

S. Hannany, priv. comm.

21 – 800 GHz 1 μK.arcmin

CMB -Bharat (ISRO?)

23 - 850 GHz 1.7 μK.arcmin

Debabrata Adak

CMB - Bharat in Brief

- European CMB community proposed CORE, 'near- ultimate' CMB polarization mission.
- Proposed mission concept did not pass the screening by ESA in January 2017.
 - Main issue is cost within ESA M-class envelope.

ESA encouraged the CORE consortium to consider a joint proposal with a major international partner

Indian CMB community submit the proposal of CMB- Bharat (Exploring Cosmic History and Origins, ECHO) to ISRO on 16th April, 2018

CMB-Bharat Specifications

- **OPT I:** Same sensitivity as CORE With three more channels in high frequency.
- OPT-II: Extension of bands both low and high frequencies with enhanced sensitivity by factor of $\sqrt{2}$.

Map Based Analysis

Working on map based cleaning.

 11 different full sky model, consistent with Planck results, with r ranging from 0 to 0.001, delensing level (84%).

- Two component separation approaches
- Commander1(Debabrata)
- NILC (Aparajita Sen)

Map based models

Component	Emission law	Nomenclature	Additional information/Templates
СМВ	Blackbody with scaling, $a_{\nu} = \frac{dB_{\nu}(T)}{dT} _{T_{CMB}};$ $T_{CMB} = 2.725 \text{K}$	-	r = 0
Thermal dust	MBB	GNILC - dust	Planck GNILC maps at 353 GHz from Planck Collaboration XLVIII (2016)
	Γ	TD — dust	HI based dust polarization model at high galactic latitude developed in Ghosh et al. (2017) and Adak et al. (2020)
		Gines - dust	Multi-layer dust model from dust extinction maps developed in Martínez-Solaeche et al. (2018)
Synchrotron	Power-law, spatially varying spectral index with $\langle \beta_s \rangle = -3.00$	Power — law	SMICA Q, U synchrotron maps from Planck Collaboration IV (2018) at 30 GHz
	frequency dependent spectral index; $\beta_s = -3.11 + Clog(\frac{\nu}{23})$ with curvature, C = -0.3 at 23 GHz	Curved — power — law	Template maps are same as for $Power - law$
	GALPROP scaling; $(\frac{\nu}{30})^2 \frac{f_s(\frac{\nu}{\alpha})}{f_s(\frac{30}{\alpha})}$ with constant $\alpha > 0$ and $f_s(\nu)$ is taken from external template generated from GALPROP code	GALPROP	Template maps are same as for Power - law
Spinning dust	CNM emission law with 1% polariz- fraction and dust polarization and	ation gle	$\begin{array}{c} Planck \mbox{ thermal dust intensity at 353 GHz} \\ (Planck Collaboration XLVIII 2016) \mbox{ scaled} \\ \mbox{at 23 GHz with correlation coefficient of 0.91 K/ K} \end{array}$
Deint accurate	Sources from radio surveys extrapolated with power laws;		Radio sources have median polarization fraction of 2.7% and 4.8% for two class of power-laws;
i onit-sources	IRAS survey modelled with modified blackbody emission laws.	-	IR sources are taken from IRIS data and having mean polarization fraction of 1.5%

Set of the simulations

Sim.ID	Pipeline	Dust	Synchrotron	Spinning	point-	delensing
				dust	sources	
SET1a	NILC, COMMANDER	GNILC-dust	GALPROP	X	X	X
SET1b	NILC, COMMANDER	GNILC - dust	GALPROP	1	X	X
SET1c	NILC, COMMANDER	GNILC - dust	GALPROP	1	1	X
SET1d	NILC, COMMANDER	GNILC - dust	GALPROP	1	1	√ (84 %)
						、 <i>、 、</i>
SET2a	NILC	${\tt Gines-dust}$	GALPROP	✓	\checkmark	X
SET2b	NILC	Gines-dust	${ t Power-law}$	1	\checkmark	×
SET2c	NILC	${\tt Gines-dust}$	Curved - power - law	1	\checkmark	×
SET3a	COMMANDER	TD — dust	GALPROP	1	5	x
				•		
SE13a	CUMMANDER	ID – dust	GALPRUP	✓	✓	~
SETId	NILC,COMMANDER	GN1LC - dust	Power - law	\checkmark	✓	X
$\operatorname{SET1d}''$	NILC,COMMANDER	GNILC-dust	${\tt Curved-power-law}$	1	1	×

Results (Analysis on different masks)

Commander

NILC

Debabrata Adak

Experiment inpur r Sim.ID		Sim.ID	COMMANDER				NILC		
			r_{mp}	$\sigma(r_{mp})$	r_{95}	r_{mp}	$\sigma(r_{mp})$	r_{95}	
		SET1a	1.80	5.74	12.71	-1.34	0.94	0.50	
		SET1b	2.33	6.02	13.77	-0.81	0.91	0.98	
		SET1c	2.55	5.73	13.44	0.79	0.95	2.66	
		SET1d	4.61	1.77	4.64	2.04	0.96	3.92	
Decorrelation		$\operatorname{SET1d}'$	0.96	5.55	11.50	1.33	1.21	3.71	
		$\operatorname{SET1d}''$	4.78	4.02	12.41	1.17	1.13	3.38	
OPTION-II	r = 0.0	SET2a	81.73	2.70	86.86	1.62	1.33	4.22	
	•	SET2b	-	-	-	1.98	1.41	4.74	
		SET2c	-	-	-	2.18	1.36	4.85	
		SET3a	1.35	0.69	2.66	-	-	_	

Results

Comment : σ_r = 0.005 - 0.006

Results (decorrelation)

Debabrata Adak

Results (decorrelation)

Experiment	inpur r	Sim.ID	COMMANDER				NILC		
			r_{mp}	$\sigma(r_{mp})$	r_{95}	r_{mp}	$\sigma(r_{mp})$	r_{95}	
		SET1a	1.80	5.74	12.71	-1.34	0.94	0.50	
		SET1b	2.33	6.02	13.77	-0.81	0.91	0.98	
		SET1c	2.55	5.73	13.44	0.79	0.95	2.66	
		SET1d	4.61	1.77	4.64	2.04	0.96	3.92	
		$\operatorname{SET1d}'$	0.96	5.55	11.50	1.33	1.21	3.71	
		$\operatorname{SET1d}''$	4.78	4.02	12.41	1.17	1.13	3.38	
OPTION-II	r = 0.0	SET2a	81.73	2.70	86.86	1.62	1.33	4.22	
		SET2b	-	-	-	1.98	1.41	4.74	
		SET2c	-	-	-	2.18	1.36	4.85	
TD-dus	t	SET3a	1.35	0.69	2.66	_	-	-	

MBB components	inpur r	Sim.ID	$A_{lens} = 1$		
			r_{mp}	$\sigma(r_{mp})$	r_{95}
one MBB	r = 0	SET3a'	188.41	5.93	-
three MBB			33.47	1.88	-

Results (delensing)

Experiment	inpur r	Sim.ID		COMMAND	ER	NILC		
			r_{mp}	$\sigma(r_{mp})$	r_{95}	r_{mp}	$\sigma(r_{mp})$	r_{95}
		SET1a	1.80	5.74	12.71	-1.34	0.94	0.50
		SET1b	2.33	6.02	13.77	-0.81	0.91	0.98
		SET1c	2.55	5.73	13.44	0.79	0.95	2.66
84%	delensing	SET1d	4.61	1.77	4.64	2.04	0.96	3.92
		$\operatorname{SET1d}'$	0.96	5.55	11.50	1.33	1.21	3.71
		$\operatorname{SET1d}''$	4.78	4.02	12.41	1.17	1.13	3.38
OPTION-II	r = 0.0	SET2a	81.73	2.70	86.86	1.62	1.33	4.22
		SET2b	-	-	-	1.98	1.41	4.74
		SET2c	-	-	-	2.18	1.36	4.85
		SET3a	1.35	0.69	2.66	-	-	-

Results(Detection significance)

Debabrata Adak

Kavli IPMU, Japan, 01/12/2020

Discovery space of CMB-Bharat

- Design driver: Details CMB polarization study
 - lensing map with S/N > 15 at all scale.
 - Constrain the ACDMor extension more precisely
- Comes 'for free' but having rich scientific interest
- map of SZ effect.
- Extragalactic sources/CIB
- Galactic foregrounds
- Magnetic field
- Reionization
- Neutrino mass
- Statistical anisotropy and non- Gaussianity

- ECHO is the instrument with combination of full sky coverage, high resolution and sensitivity, large frequency coverage in a single platform.
- Huge discovery space: Inflation, particle physics, galactic and extragalactic astronomy - particularly designed to detect : r ~ 0.001.
- We consider 11 set of simulations, 84% delensing, decorrelation effect.
- In this forecast study, we do not consider non-white noise, systematics.
- We are hopeful to see ISRO to support CMB Bharat (ECHO).

Thank you

Extra slides

Indian contribution

Capabilities achieved within India

- Service module
 - Design, fabrication, assembly, testing
- Launch to L2
- Tracking & control
- Orbit maintenance
- Science data downlink
- Data products and analysis
- Mission planning and operation

Indian contribution

Capabilities achieved with modest planned investments

- Telescope and Optics
 - Design, fabrication, assembly, testing
 - Reflectors, baffling
 - Reimaging optics, filters
- Science Payload
 - Design, assembly, testing

Indian contribution

Capabilities achieved with long-term planned investments

- Broadband photon-noise-limited sensors & readout for CMB frequency bands
- Cryogenic coolers at 100mK in space

Working Group

Cluster Physics from CMB:

Lead: Subhabrata Majumdar (TIFR) Members: Suvodip Mukherjee, Dhiraj Hazra, K.P. Singh, Siddharth Savyasachi Malu, Abhirup Datta, Priyanka Singh

Foregrounds and CIB:

Lead: Tuhin Ghosh (NISER) Members: Rajib Saha, Soumen Basak, Pavan K. Aluri, Moumita Aich, Ranajoy Banerji, Aditya Rotti, Abhirup Datta, Pravabati Chingangbam, Sandeep Rana (List Here)

Instrument science:

Lead: Zeeshan Ahmed (Stanford Univ) Members: Aafaque R Khan, Rahul Datta, Mayuri S.Rao, Ritoban Thakur

Inflation:

Lead: L. Sriramkumar (IIT Madras) Members: Dhiraj Hazra, Anshuman Maharana, Urjit Yajnik, Raghu Rangarajan, Supratik Pal, Anjan Ananda Sen, Subodh Patil, Rajeev Kumar Jain, Gaurav Goswami, V. Sreenath, Debika Chowdhury, Pravabati Chingangbam, Moumita Aich (List here)

And 8 more

Spectral parameters

Maps

thermaldust_ampl1 Q_POLARISATION

 $thermaldust_temp_1 \ Q_POLARISATION$

Synchrotron amplitude, Stokes Q

Synchrotron spectral index (for K_{RJ} units)

spindust_ampl Q_POLARISATION

		<i>r</i> _{mp}	σ_r	r 95	SNR
Experiment	A _{lens}				
	0.0	1.998	0.470	-	4.251
CORE	0.5	1.317	0.713	2.715	1.848
	1.0	1.237	0.905	3.013	1.367
	0.0	0.976	0.359	_	2.719
CMB BHARAT OPT-I	0.5	0.774	0.562	1.877	1.375
	1.0	0.788	0.744	2.246	1.060
	0.0	0.312	0.147	_	2.129
CMB BHARAT OPT-II	0.5	0.208	0.344	0.883	0.603
	1.0	0.211	0.518	1.226	0.407
	0.0	2.278	0.592	-	3.847
LiteBIRD	0.5	2.231	0.874	-	2.553
	1.0	2.353	1.109	_	2.122