Broad Spectrum Noise Sources for Calibration of BICEP/Keck CMB Experiments

James Cornelison Center for Astrophysics | Harvard & Smithsonian

1-Min. Summary

Motivation

- Calibrators need high stable output with precise polarization and CMB spectral profile
- Need higher signal than thermal sources
- Gunn sources can produce standing waves
- Broad Spectrum Noise Source
 - Take low-frequency noise (Johnson noise) and amplify by ~70dB
 - Upconvert into desired frequency range
 - Quasi-thermal output with broad spectrum

• Performance

- Capable of high power output (up to 10^11 Kelvin) that is extremely stable over our observing times
- Relatively flat spectra

Calibrations

- Measurements of the far sidelobes (>20 deg) down to -70dB
- Polarization angles and xpol response down to σ <0.1 deg and σ <0.003 respectively

BA1 instrumental highlights

Camera insert

192/300 TES detectors at 30/40 GHz.

Integrated in 12 shielded modules, each with a low-pass mesh filters.

Time-Domain multiplexed readout.

The BICEP/Keck Collaboration

Motivation: What Calibrations do we need?

Calibrations

- Far field near- and far-sidelobe Mapping
- Polarization Calibration

Calibrator Requirements

- Stable output over observing times
 - σ < 1e-2 over O(24hrs) for FSL
 - $\sigma < 1e-2$ over O(1hr) for Pol Cal.
- High signal with tunable output power
- Thermal spectrum
- Highly/precisely polarized

Motivation: Source Alternatives

Thermal Sources

Pros:

- Approximate blackbody
- Easy to polarize

Cons:

- Physically Large
- Power based on ambient temperature
- Hard to precisely polarize

Motivation: Source Alternatives

Gunn Oscillators

Pros:

- Large signal
- Compact
- Easy to level output power
- Easy to polarize
- High chop rates

Cons:

Monochromatic

POLOCALC

Broad Spectrum Noise Source

Pros:

- Broad spectrum (quasi-thermal)
- High output (~90 GK_{RJ})
- 65 dB tunable attenuation
- Highly polarized (WG+wire grid)
- Electronically Chopped

Cons

- More complex than thermal / Gunn sources
- More expensive (but only slightly)

Broad Spectrum Noise Source

30/40 GHz BSNS

Broad Spectrum Noise Source

Why start with low frequency?

- Cheaper
- Higher stability
- Easier to chop

Possible downsides

• Coherence time?

Spectral Performance

150 GHz BSNS

Figure 6: Calibrated spectrum for the broadband noise source with and without the 140-160 GHz filter.

Output Stability

Attenuation Range

Source Comparison

Source (GHz)	Output (dBm)	Bandpass (GHz)	Output (dBK _{RJ})	Flatness (dB)	Atten. Range (dB)
30/40	13	16	110	~6	65
90	2.3	13*	100*	1*	95
150	-0.7	20	95	~10	70
220	-40	36*	60*	4*	60*

*Based on design specifications

Far Sidelobe Mapping

Far Sidelobe Mapping

Credit: Eric Yang, Stanford University

Far Sidelobe Mapping

Credit: E. Schoen & R. Basu Thakur, CIT

Polarization Calibration

- Polarizing Grid
 - xpol response <0.03% @ 150 GHz
- Precision Rotation Stage
 - Angle repeatability < 0.01°

A Detector Rasterset Data

• Measured pol angles $\sigma < 0.1^{\circ}$

• Measures xpol resp. σ <0.003

1-Min. Summary

Motivation

- Calibrators need high stable output with precise polarization and CMB spectral profile
- Need higher SNR than thermal sources
- Gunn sources can produce standing waves
- Broad Spectrum Noise Source
 - Take low-frequency noise (Johnson noise) and amplify by ~70dB
 - Upconvert into desired frequency range
 - Quasi-thermal output with broad spectrum

• Performance

- Capable of high power output O(10^9 K) that is extremely stable over our observing times
- Relatively flat spectra
- Calibrations
 - Measurements of the far sidelobes (>20 deg) down to -70dB
 - Polarization angles and xpol response down to σ <0.1 deg and σ <0.003 respectively