# HWP development for LiteBIRD Low Frequency Telescope

CMB systematics and calibration focus workshop

Yuki Sakurai (Kavli IPMU) and LFT PMU team







# Summary

- Continuously rotating HWP is a powerful tool for 1/*f* noise rejection and differential systematics.
- LiteBIRD low-frequency telescope employs HWP and its development is in progress at Kavli IPMU (Japan).
  - sapphire broadband achromatic HWP
  - cryogenic rotation mechanism
- Summarize HWP systematics based on hardware point of view.
  - AHWP efficiency: transmittance, modulation efficiency
  - Q/U mixing: angle reconstruction, frequency-dependent phase
  - spurious 4*f* signal
- Introduce optical measurement and calibration systems
  - $\circ$  Constructed  $\phi 50mm$  cold optical measurement setup
  - Large diameter setup and HWP+TES testbet are in prep.







### Introduction

- The LiteBIRD mission part consists of three telescopes: reflective low-frequency telescope (LFT) and refractive medium-and-high-frequency telescopes (MHFT).
- Each telescope employs polarization modulation unit (PMU) to suppress 1/f noise and mitigates differential systematic uncertainties.
- LiteBIRD is in the conceptual design phase and we have developed the breadboard model (BBM) of the LFT PMU with a diameter of 330mm in preparation of a larger (500 mm) flight model.



### Continuously rotating HWP

$$S_{out} = M_{det}R(-\omega_{hwp}t)M_{hwp}R(\omega_{hwp}t)S_{in}$$

$$S_{out}(\nu) = \frac{1}{2} \{ I(\nu) + Q_{in}(\nu) \cos(4\omega t - 2\psi_i) + U_{in}(\nu) \sin(4\omega t - 2\psi_i) \}$$



### Continuously rotating HWP

$$S_{out} = M_{det}R(-\omega_{hwp}t)M_{hwp}R(\omega_{hwp}t)S_{in}$$

$$S_{out}(\nu) = \frac{1}{2} \{ I(\nu) + Q_{in}(\nu) \cos(4\omega t - 2\psi_i) + U_{in}(\nu) \sin(4\omega t - 2\psi_i) \}$$



# Why HWP needs in space?

| Pros.                                                | Cons.                                                      |
|------------------------------------------------------|------------------------------------------------------------|
| <b>1/f noise rejection</b><br>Systematics mitigation | HWP systematics<br>Sensitivity effect<br>System complexity |

- Scan speed of LiteBIRD:  $f_{scan} = 0.05$  rpm (20 min/rotation)
- Difficult to have guarantee for  $1/f \rightarrow$  continuously rotating HWP
- ABS, POLARBEAR, ... successfully demonstrated  $f_{knee} \sim 2 \text{ mHz}$ .
- Cons. depends on hardware performance and calibration.

### Polarization Modulation Unit for LiteBIRD

![](_page_6_Figure_1.jpeg)

### Sapphire Achromatic HWP

- **Challenges**: broadband (34 161 GHz: 9 bands), large diameter (~500mm), , launch tolerance
- Broadband AR coating: sub-wavelength structure by laser ablation machining.
- Broadband AHWP: Pancharatnam-based 5-layers stacked sapphire.
- The designs of AR and AHWP are optimized to maximize transmittance and modulation efficiency.
- We fabricated φ50 mm small prototype sample and demonstrated optical performance.
- AHWP with large diameter ( $\varphi$ 330mm) is in prep.

![](_page_7_Picture_8.jpeg)

![](_page_7_Figure_9.jpeg)

# AHWP gluing and assembly

- We are developing sodium silicate bonding used in KAGRA and LIGO to glue each sapphire layer.
  - sufficient strength at launch and thermal contraction, non-optical effect
- We performed assembly test with  $\varphi$ 330mm sapphire.
- CFRP holder was designed and fabricated
  - same thermal contraction with sapphire, stress relief mechanism

![](_page_8_Picture_6.jpeg)

 $\begin{array}{l} \label{eq:chemical bonding with constraint} \\ (\mathrm{HO})_2\mathrm{AlOSi}(\mathrm{HO})_3 \ \mathrm{network} \end{array}$ 

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

Stacking and Assembling to holder

#### Raw sapphire ingot

Cutting into disks

# Cryogenic rotation mechanism

**Challenges:** cryogenically stable rotation with minimal heat dissipation < 4mW and T<sub>HWP</sub> < 20 K **Superconducting magnetic bearing (SMB)** 

- SmCo ring (rotor) and YBCO bulks (stator).
- Minimize loss by improving the magnetic field uniformity.

#### Hollow-bore synchronous motor with optical encoder

- Contactless motor consists of SmCo (rotor) and coils (stator)
- Improve the motor efficiency by high purity Cu coils and magnetic yokes.

#### Gripper mechanism

- Grip the rotor at 300 K and release it after field cooling.
- Linear actuator with a cryogenic stepping motor

![](_page_9_Picture_10.jpeg)

![](_page_9_Figure_11.jpeg)

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

![](_page_10_Picture_0.jpeg)

### Non-ideal HWP

$$\begin{split} S_{out} &= M_{det} R \big( -\omega_{hwp} t \big) M_{hwp} R \big( \omega_{hwp} t \big) S_{in} \\ & \text{Of term} \\ S_{\text{out}}(t) = & \frac{1}{2} \underbrace{D_{0I} I_{\text{in}} + D_{0Q} Q_{\text{in}} + D_{0U} U_{\text{in}}}_{4 \int 2I I_{\text{in}} \cos(2\omega_{\text{hwp}} t - 2\psi - 2\phi_0) + D_2 \sqrt{Q_{\text{in}}^2 + U_{\text{in}}^2} \cos(2\omega_{\text{hwp}} t - 2\psi - 2\phi_2)} \\ & + \underbrace{D_4 \sqrt{Q_{\text{in}}^2 + U_{\text{in}}^2} \cos(4\omega_{\text{hwp}} t - 2\psi - 2\phi_2)}_{4f \text{ term}} \\ D_4 &= & \frac{1}{2} \sqrt{(M_{\text{QQ}} - M_{\text{UU}})^2 + (M_{\text{QU}} + M_{\text{UQ}})^2}} & \leftarrow \text{modulation efficiency} \\ \phi_4 &= & \frac{1}{2} \tan^{-1} \frac{M_{\text{QU}} + M_{\text{UQ}}}{M_{\text{QQ}} - M_{\text{UU}}} + & \frac{1}{4} \tan^{-1} \frac{U_{\text{in}}}{Q_{\text{in}}}. & \leftarrow \text{frequency-dependent phase} \end{split}$$

12

### Non-ideal HWP

$$\begin{split} S_{out} &= M_{det} R(-\omega_{hwp} t) M_{hwp} R(\omega_{hwp} t) S_{in} \\ & \text{Of term} \\ S_{out}(t) = & \frac{1}{2} \boxed{D_{0I} I_{\text{in}} + D_{0Q} Q_{\text{in}} + D_{0U} U_{\text{in}}} \\ & + D_{2I} I_{\text{in}} \cos(2\omega_{\text{hwp}} t - 2\psi - 2\phi_0) + D_2 \sqrt{Q_{\text{in}}^2 + U_{\text{in}}^2} \cos(2\omega_{\text{hwp}} t - 2\psi - 2\phi_2)) \\ & 2f \text{ term} + D_4 \sqrt{Q_{\text{in}}^2 + U_{\text{in}}^2} \cos(4\omega_{\text{hwp}} t - 2\psi - 4\phi_4)] \\ & \text{modulation efficiency} \text{ rotation speed} \text{ phase} \end{split}$$

# **AHWP Efficiency**

- Transmittance affects to both  $I \rightarrow I$  and  $P \rightarrow P$ .
- The SWS design optimized to cover LFT frequency range of 34 ~ 161 GHz.
  - Measured transmittance: > 91% (34 46 GHz),
    >97% (45 161 GHz)
- Modulation efficiency affects to  $P \rightarrow P$ .
  - A(4f) / A(0f) is obtained from modulation data
  - > 95% (50 140 GHz), reduced at low and high frequency region
- Determination of requirements needs iteration with sensitivity and systematics studies.
- Knowledge of frequency dependence must be calibrated at ground test.

![](_page_13_Figure_9.jpeg)

![](_page_13_Figure_10.jpeg)

K. Komatsu et al SPIE in prep.

![](_page_13_Figure_12.jpeg)

# Q/U mixing: Angle reconstruction

S. Sugiyama et al SPIE in prep.

- Miss reconstruction of HWP angle causes Q/U mixing.
- Angle is measured incremental optical encoder; LED, silicon photodiode, and chopper disk.
- Apply a simple threshold algorithm to determine angle from encoder signal.
- We confirmed the angle uncertainty is < 0.25 arcmin, and the rotation stability is 1.42 mHz (for 1 pulse time window)
- The uncertainty dominated by electrical noise from crosstalk with the motor drive signal.

![](_page_14_Figure_7.jpeg)

![](_page_14_Figure_8.jpeg)

### Q/U mixing: AHWP frequency-dependent phase

$$S_{out}(\nu) = \frac{1}{2} [I(\nu) + \epsilon(\nu) Q_{in}(\nu) \cos(4\omega t - 2\psi_i - 4\phi_4(\nu)) + U_{in}(\nu) \sin(4\omega t - 2\psi_i - 4\phi_4(\nu))]$$
  
=  $\frac{1}{2} [I(\nu) + \epsilon(\nu) Q'_{in}(\nu) \cos(4\omega t - 2\psi_i) + U'_{in}(\nu) \sin(4\omega t - 2\psi_i)]$ 

- Q and U components are mixed if there is frequency-dependent phase  $\phi_4$ .
- The flat phase can be obtained by the AHWP design optimization.
  - non-flat phase, wider mod. eff.
  - flat phase, reduced mod. eff. at low & high frequency edge
- We are in progress to investigate necessity of the flat phase and its knowledge
  - $\circ$  e.g)  $\delta r$  estimation after foreground removal with Q' and U'.

![](_page_15_Figure_8.jpeg)

# Any spurious 4*f* signals

- effect to 4*f* peak
  - height
    - temperature variation (quadrupole)
    - rotational synchronous effect, e.g. wobble
  - width
    - rotation instability / encoder inaccuracy
- effect to the sideband of 4*f* 
  - leakage due to differential transmission/emissivity + oblique angle
  - ghosting (higher order)
- effect to 3*f* (or 5*f*) that potentially limit the science bandwidth
  - leakage from the rotational synchronous effect
  - sapphire optic axis alignment
- Any large spurious signal
  - differential transmission/emission + detector non-linearity /time constant variation. (T<sub>cmb</sub> ~ 3K can be 30mK by 1% of diff. trans. while ΔT from dipole is 3mK.)

#### Before demodulation

![](_page_16_Figure_16.jpeg)

![](_page_16_Figure_17.jpeg)

# Example of spurious 4*f* signals

- normal incident: differential transmission / emissivity appear in only 2*f* term
- oblique incident makes 2f + 4f terms
- RCWA based simulation was performed to obtain Mueller matrix.
- The 2*f* term due to  $I \rightarrow P$  with a normal incident angle is  $10^{-3}$  order.
- The 4*f* term due to I→P with an 10 deg.
  incident angle is 10<sup>-4</sup> order.

![](_page_17_Figure_6.jpeg)

### **Optical measurement setup**

Room temperature measurement systems at Kavli IPMU

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

VNA measurement system 26.5 GHz - 330 GHz

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Figure_9.jpeg)

#### Large diameter rot. mech.

![](_page_18_Picture_11.jpeg)

### **Optical measurement setup**

- Already constructed φ50mm cryogenic optical measurement system at Kavli IPMU
- In preparation of the large cryogenic optical measurement system
- Planing a cold beam mapping combined with mirror (mimic LFT) or lens optics.
- HWP + TES testbed is also planning.

#### K. Komatsu et al SPIE in prep.

![](_page_19_Picture_6.jpeg)

![](_page_19_Figure_7.jpeg)

#### Large cryostat system

![](_page_19_Figure_9.jpeg)

# Summary

- Continuously rotating HWP is a powerful tool for 1/*f* noise rejection and differential systematics.
- LiteBIRD low-frequency telescope employs HWP and its development is in progress at Kavli IPMU (Japan).
  - sapphire broadband achromatic HWP
  - cryogenic rotation mechanism
- Summarize HWP systematics based on hardware point of view.
  - AHWP efficiency: transmittance, modulation efficiency
  - Q/U mixing: angle reconstruction, frequency-dependent phase
  - spurious 4*f* signal
- Introduce optical measurement and calibration systems
  - $\circ$  Constructed  $\phi 50mm$  cold optical measurement setup
  - Large diameter setup and HWP+TES testbet are in prep.

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

![](_page_20_Figure_14.jpeg)