Impact of instrumental systematic effects on component separation and large scale B-modes measurements

Clara Vergès

CMB systematics and calibration focus workshop Kavli IPMU, 30 Nov. - 2 Dec. 2020

Component separation framework

Component separation

Goal = extract CMB signal from multi-component maps

- Measurements of multi-component sky in several frequency bands
- Separation of sky components (several methods)
- Estimation of the effects of the separation on cosmological parameters

Parametric component separation

Standard

mixing

matrix

Data model

Multi frequency data set Q and U maps for each observed frequency

Parametrised by **spectral parameters**

Component maps

Q and U map at a fiducial frequency

for each sky component

Foregrounds emission laws

• Power-law (synchrotron) and modified black body (dust)

=

• Three spectral parameters (simplest model): one spectral index for each + dust temperature (more complex models can be used)

Interplay with instrumental systematic effects?

New generation experiments

Better sensitivity

- Increased detector count
- Combination of telescopes and data sets
- ⇒ Mismatch and variability in detector properties

Readout

- Increased multiplexing factor
- Multichroic pixels
- ⇒ possibly **increased crosstalk** + **inter-band** leakage
- \Rightarrow interplay with HWP

Broadband optical components

- Sinuous antennas
- Multilayer HWP
- ⇒ effective **frequency-dependent polarisation angle**
- ⇒ interplay with bandpasses + **foreground spectral laws**

Control of systematics in component separation

- Data models
- Calibration procedures
- Component separation procedure itself

Generalised mixing matrix

Data model

	Multi frequency data set Pure Q and U maps for each observed frequency	=	Standard mixing matrix		Component maps Q and U map at a fiducial frequency for each sky component	
	Generalisation		Parametrised by spectral parameters			
	Multi frequency data set Integrated maps for each observed frequency	=	Generalised mixing matrix	l	Component maps Q and U map at a fiducial frequency for each sky component	
				Parametrised by		
V	We minimise the number of assumptions we spectral and hardware parameters					
have to make about unknown parameters				Allows for		
\rightarrow output of map-making might loose their				Stokes parameters mixing		
simple physical interpretation as Q/U						

Forecasting procedure

-Estimate constraints on r given foreground templates and instrumental configuration -

Estimate mixing matrix parameters Ensemble-averaged spectral likelihood - without priors - with priors

Key features of the new procedure

- **Spectral + hardware** parameters are estimated
- Average over **noise + CMB**
- Ability to include **priors**

Peak of the ensemble-averaged spectral likelihood

- Ensemble-averaged value of the parameters
- Shift in peak position sources **systematic** uncertainty

Hessian matrix computed at the peak

- Conditional (Hessian) and marginalised ^{0.3} (inverse) uncertainties on parameters
 Uncertainty on parameters sources
- Uncertainty on parameters sources **statistical** uncertainty
- Eigenvalues decomposition
- \rightarrow degeneracies in the parameter space, priors?

Forecasting procedure

—Estimate constraints on r given foreground templates and instrumental configuration —

Worked example: HWP effects

C.Vergès, J. Errard and R. Stompor Framework for analysis of next generation, polarised CMB data sets in the presence of galactic foregrounds and systematic effects

Time domain data model

Monochromatic, single layer HWP

- HWP has only one birefringent layer, optimised for the central frequency v_c
- Continuously rotating polarisation modulator, with angle φ_t
- Straightforward separation of Q and U in map-making using HWP modulation

$$d(\nu_c) = I(\nu_c) + Q(\nu_c) \times \cos(4\varphi_t + 2\psi_t) + U(\nu_c) \times \sin(4\varphi_t + 2\psi_t) + U(\nu_c) \times \sin(4\varphi_t + 2\psi_t) + MAKING + Pure U$$

Bandpass integration

- •Additional coefficients in the data model but no Q and U mixing
- Pure Q/U bandpass averaged-maps for each frequency band can be produced in map-making (and used for component separation) C. Vergès - CMB systematics workshop - 10

Multifrequency model

Broadband optical components

- **Q/U mixing** due to HWP + sinuous antenna
- → frequency-dependent polarisation angle
- Interplay with foreground spectral laws

 $d(\nu_c) = I(\nu_c)$ + $Q(\nu_c) \times \cos[4\varphi_t + 2\psi_t + \phi_{\text{inst.}}(\nu_c)]$ + $U(\nu_c) \times \sin[4\varphi_t + 2\psi_t + \phi_{\text{inst.}}(\nu_c)]$

Calibration = determine instrumental parameters prior to component separation

e.g. Abitbol et al., The Simons Observatory: Bandpass and polarization-angle calibration requirements for B-mode searches, 2020

- Requires extensive calibration campaigns and high precision measurements
- Interplay instrument polarisation angle/foreground can not be exactly modelled, in particular when including bandpasses
- → Calibration is a necessary step, but we can go further!

Multifrequency model

 S_4

Generalised data model: effective mixing of Q and U

 $d(\nu) = \mathbf{I}(\nu)$

+Q(
$$\nu$$
)[C_Q × cos(4 φ_t + 2 ψ_t) + S_Q × sin(4 φ_t + 2 ψ_t)]
+U(ν)[C_U × cos(4 φ_t + 2 ψ_t) + S_U × sin(4 φ_t + 2 ψ_t)]

Mixed Stokes components

Bandpass integration

- Changes coefficients of the linear combination of Q and U
- Bandpass-averaged maps are available for each frequency band
- → must be included step-by-step in the data model

 C_4

Output of map-making and input of component separation are NOT pure Q and U maps

Instrument configuration

Hardware configuration

The Simons Observatory: Science goals and forecast, 2018

- 6 frequency bands in 3 dichroic focal planes: {30 and 40 GHz}, {90 and 150 GHz}, {225 and 280 GHz}
- → **12 parameters**: band-center and bandwidth for each band
- 3-layer HWP: 1 per telescope
- → 6 parameters: angle and thickness for each HWP
- Sinuous antennas
- \rightarrow we fix their parameters for this work

Foreground parameters

- T(dust) is fixed at 19.6K
- No variation of foreground spectral indices
- → **2 parameters**: β (dust) and β (sync.)

Total number of parameters: 20

Uncertainties & Degeneracies

Can we fit for spectral + instrumental parameters? At which cost?

HWP parameters

- Applied to several frequency bands → **well constrained without extra-information**
- No degeneracies
- Do not significantly increase uncertainties on spectral parameters

Bandpass parameters

- Applied to one band only → band-center and bandwidth are (nearly) degenerate for a given band → requires **priors**
- Bandwidth: poorly constrained, but spectral parameters well constrained
- Band-center: well constrained, but spectral parameters poorly constrained

Calibration priors on bandpass parameters → we can fit for all 20 parameters! (foreground + HWP + bandpass)

Statistical residuals

How uncertainties on parameters (spectral/hardware) affect statistical residuals?

Level of residuals

- Set by uncertainty on spectral parameters
- Can be controlled with appropriate **calibration priors**

Shape of residuals

- Set by uncertainty on hardware parameters
- Leakage of **CMB E-modes to foreground residuals** due to effective parametrisation of CMB by hardware parameters

Cosmological likelihood

How can we deal with (potentially high) statistical residuals in the cosmological likelihood?

Ignore residuals

- Obviously the simplest approach
- Not sufficient when statistical residuals are high \rightarrow bias on r is on the order of magnitude of $\sigma(r)$

Add instrumental priors to constrain parameters better

- Effectively lowers statistical residuals
- No additional step in data analysis, but requires accurate calibration priors

Deproject statistical residuals

- Modelling of statistical residuals included in the CMB covariance matrix
- Requires model for statistical residuals

Systematic residuals

Mismatch between instrument model and real instrumental configuration

- Incorrect/simplistic modelling of the instrument
- Average values of detector parameters (bandpass, antennas, gain)

Test case: bandpass variation

- "Controlled" mismatch between realistic bandpass and model
- No significant impact as systematic residuals are dominated by statistical residuals

This type of effects can be investigated further in the proposed framework

Crosstalk

Preliminary study

Configuration

- SO-like configuration
- No bandpass integration nor frequency-dependent effects

Crosstalk model

- Map-level leakage
- Intra-band and inter-band crosstalk
- Random coefficients from Gaussian distribution

Simplified component separation framework

- Crosstalk mixing parameters are not estimated
- Estimation of r and $\sigma(r)$ for various levels of input crosstalk

J. Errard in K. T Crowley et al., *Studies of Systematic Uncertainties* for Simons Observatory: Detector Array Effects, SPIE 2018

Lessons learned

- Level of crosstalk as we expect for future experiments do not significantly bias *r* when considered as a single effect
- More accurate model required
- Combine with other effects

C. Vergès - CMB systematics workshop - 19

Prospects for crosstalk study

Instrument model

• Improve crosstalk model: start from **time-domain** simulations to include parametric crosstalk model based on readout architecture

→ K. T Crowley et al., Studies of Systematic Uncertainties for Simons Observatory: Detector Array Effects, SPIE 2018; Mirmelstein et al., Instrumental systematics biases in CMB lensing reconstruction: a simulation-based assessment, 2020.

- Include bandpass integration
- Explicitly include HWP effects (Q/U mixing)

Component separation framework

- Look for degeneracies with other instrumental parameters of interest
- Estimate crosstalk parameters (if/when possible)
- → impact on statistical residuals if crosstalk parameters can be estimated
- Compute *r* and $\sigma(r)$
- Investigate systematic residuals due to incorrect/simple crosstalk modelling

- End-to-end framework to include instrumental systematic effects in the component separation process
- **Parametric models** of various elements of the instrument: HWP, bandpass, readout architecture
- **Generalised data model** for the multi-component sky that include in particular Q and U **mixing** and **frequency-dependent effects**

Demonstration in the context of forecasting

- Analytic insights -> degeneracies / uncertainties, impact on residuals
- Residuals **mitigation strategies** → priors, deprojection of statistical residuals

Future extensions

- **Instrument models** → add more effects, combine them
- **Systematic residuals** → more realistic models for the data, average value of parameters vs. individual measurements, etc.
- Not limited to forecasting!