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(Beam modeling and implications for \ (()ptical modelling for Simons Observatory
B-mode polarization Large Aperture Telescope
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e Good: Sort of know what we're up against

e Bad: Requires significantly better
understanding of instruments

e Ugly: Instrument characterization takes
time and resources

Internal baffling (ray tracing)

Sidelobe pattern (ray tracing)

Beam properties (physical optics)
Panel gap diffraction (physical optics)

These simulations describe our expectations,
Beam modeling is no replacement for actual but we are eager to measure realized
measurements performance

Instrument and signal/foreground modeling
will likely need to happen concurrently
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Modeling optical systematics for the Simons
Observatory Large Aperture Telescope

CMB systematics and calibration focus workshop — Dec 2, 2020
Jon Gudmundsson, Stockholm University and the Oskar Klein Centre

Fig. 1. Three 6 m aperture telescope designs with different f. . Simons Observatory Large
Plotted rays span the 150 GHz CFOV with Strehl ratios > 0.70. ‘ > Aperture Telescope
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From BeyondPlanck I. Global Bayesian analysis of the
Planck Low Freguency Instrument data, Section 1.4:

Indeed, only toward the end of the Planck mission period did
it become evident that the single most limiting factor for the
overall analysis was neither instrumental systematics nor
astrophysical foregrounds as such, but rather the interplay
between the two. Intuitively speaking, the problem may be
summarized as follows: One cannot robustly characterize
the astrophysical sky without knowing the properties of the
instrument, and one cannot characterize the instrument
without knowing the properties of the astrophysical sky. The
calibration and component separation procedures are
intimately tied together.



https://arxiv.org/abs/2011.05609
https://arxiv.org/abs/2011.05609

Framework for analysis of
next generation, polarised
CMB data sets in the
presence of galactic
foregrounds and systematic
effects — Vergeés et al.

(2020)

The Simons Observatory:

Bandpass and
polarization-angle calibration

requirements for B-mode
searches — Abitbol et al.

(2020)

New Extraction of the
Cosmic Birefringence from
the Planck 2018 Polarization
Data — Minami and Komatsu

(2020)

A new limit on CMB
circular polarization from
SPIDER — Nagqy et al

(2016)
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Spin characterisation of systematics in CMB surveys — a comprehensive
formalism — McCallum, Thomas, Brown, Tessore (2020)

From BeyondPlanck I. Global Bayesian analysis of the
Planck Low Freguency Instrument data, Section 1.4:

Indeed, only toward the end of the Planck mission period did
it become evident that the single most limiting factor for the

overall analysis was neither instrumental systematics nor

astrophysical foregrounds as such, but rather the interplay
between the two. Intuitively speaking, the problem may be

summarized as follows: One cannot robustly characterize
the astrophysical sky without knowing the properties of the
instrument, and one cannot characterize the instrument
without knowing the properties of the astrophysical sky. The
calibration and component separation procedures are
intimately tied together.

BICEP / Keck Array Xll: Constraints on axion-like

Planck intermediate results.
XLVI. Reduction of
large-scale systematic
effects in HFI polarization
maps and estimation of the
reionization optical depth —
Planck Collaboration (2016)

Two-year Cosmology Large
Angular Scale Surveyor
(CLASS) Observations: A
Measurement of Circular
Polarization at 40 GHz —
Padilla et al. (2019)

The Atacama Cosmology
Telescope: Constraints on
Cosmic Birefringence —
Namikawa et al. (2020)

Instrumental systematics biases in CMB

polarization oscillations in the cosmic microwave

lensing reconstruction: a simulation-based

background — BICEP/Keck Array collaboration (2020)

assessment — Mirmelstein, Fabbia, Lewis,

and Peloton (2020)
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Example: Interplay between HWP and FGs

Many next-generation CMB experiments using polarization modulators
o Most common examples are so-called: half-wave plates (HWPs)
o Improves cross-linking, signal modulation enables noise modeling
HWPs add significant complexity to optical system
Incorporating interactions between HWPs and rest of the optical system not-possible

with any existing simulation infrastructure

Updated version of beamconv (https://qithub.com/AdriJD/beamconv) to be made

available in the coming weeks

L e -

ni

— HWP

Jon Gudmundsson
ckholm December 2, 2020

The HWP induces a polarization dependent phase in
incoming light; typically used as the first optical element
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https://github.com/AdriJD/beamconv
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Frequency-dependent phase angle

Residual from sidelobe coupling to

Incorrect phase angle correction: using phase angle

for dust/CMB when observing CMB/dust
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Map making will have to account for spectral energy distribution of sources; various
foreground models impact B-mode residuals differently
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Internal baffling (ray tracing)
Sidelobe pattern (ray tracing)

Beam properties (physical optics)
Panel gap diffraction (physical optics)

e Good: Sort of know what we're up against

e Bad: Requires significantly better
understanding of instruments

e Ugly: Instrument characterization takes
time and resources

These simulations describe our expectations,
Beam modeling is no replacement for actual but we are eager to measure realized
measurements performance

Instrument and signal/foreground modeling will
likely need to happen concurrently
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Simons Observatory (SO)
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The Simons Observatory — quick recap

Atacama, Chile Simons
Altitude: 5200 m Array .
High and dry ' b
23° S latitude
Established site
Room for expansion A
Approx 60k detectors & e
spanning 30-270 GHz SO-Nominal
i
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Recent Progress

Nov 19, SO LAT receiver back plate Dec ‘19, SO LAT receiver close-up Oct ‘20, SO LAT under construction

Jon Gudmundsson
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The Large Aperture Telescope
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Internal baffling simulations (ray tracing)

e Warm spillover a significant concern for loading

e Other cameras of similar design to the LATR have
reported sensitivity to power at angles far larger
than the geometric ray tracing would indicate

e Non-sequential stray light analysis using Zemax

e Time-reverse sims with a detector on the Seet X, Cheamore et a1 (2020)
sky-side of the vacuum window

e Generate 10° rays and separate
based on surface interactions

e Study impact of different
coatings (see e.qg. tile)
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https://arxiv.org/abs/2010.02233

Internal baffling simulations (ray tracing)
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Sidelobes and warm spillover (ray tracing)

What if our internal baffling simulations are not adequate?
o How can we direct rays efficiently to the sky?
Prioritize mapping speed over systematic control

Predict expected spillover far sidelobes

Assumptions from ACT measurements
o See Gallardo et al. (2018)

Polarization-dependent effects not
Included, but work in progress

A 0.5% reduction in spillover corre-
sponds to 10-15% increase in mapping
speed at 150 GHz

Jon Gudmundsson
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https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8452/845224/Mirror-illumination-and-spillover-measurements-of-the-Atacama-Cosmology-Telescope/10.1117/12.926585.short?SSO=1

Sidelobes and warm spillover (ray tracing)

e Reflective baffle directs power more efficiently to the sky
o Roughly 0.5% increase in optical power making it out after 3 bounces
e Ray-tracing beam maps, Left: No baffle, Right: Cone-shaped baffle

o Power in large sidelobe reduced by almost factor of 2
o Replaced with an annular feature
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Physical optics (PO) simulations — setup

e Electric field emitted from focal plane (horn) location and propagated
in succession through: 1) lens 3; 2) cold stop; 3) lens 2; 4) lens 1; 5)
hexagonal vacuum window; 6) secondary; 7) primary

S
et Jon
e Decem

~

Hexagonal
aperture

Gudmundsson
ber 2, 2020

Filters not included

No optics tube, internal reflections
Vacuum window modeled as a
hexagonal aperture, not a curved
dielectric



Physical optics (PO) simulations — setup

e Goal: Provide quantitative predictions for far-field beam response
that can be used to assess impact on mapping speed and various
science efforts

e Electric fields emitted from 52 points on the

FPU and propagated through all ‘2

View from secondary
mirror looking down
towards receiver

three lenses

e Run sims for —
90, 150, 220, (5) (5)1 e
and 270 GHz ;

Jon Gudmundsson
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Physical optics sims — Strehl

e Beam ellipticity at 150 GHz as predicted by PO sims (left) correlates

with Strehl ratio as calculated using ray tracing in Zemax (right)

600 +

400 -

Y [mm]

—400

—600 -

200 +
O .
—200 - i5 cl i2

ve

Y

~800 —600

Jon Gudmundsson
December 2, 2020

400 -200 O 200 400 600 800
X [mm]

0.10

0.08

0.06

0.04

0.02

0.00

Ellipticity

Y [mm]

600 -

400 -
i6 i1

200 +

O .

—200 - i5 cl i

—400 -

—600 -
i4 i3

—800 —600 —400 -200 O 200 400 600 800
X [mm]

2

1.00

0.95

0.90

o
o)
]

Strehl ratio

0.80

0.75

0.70

20



Physical optics sims — performance

e Predict distribution of beam ellipticity and FWHM at 150 GHz

0.00 0.02 0.04 0.06 0.08 0.10
Ellipticity
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Physical optics sims — panel gaps

e How do the 1.2-mm gaps between the panels in the secondary and primary

. . — 06 - 5
mirror influence our far field response at 150 GHz? e e
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