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Polarization Angle Uncertainty



Polarization Angle Uncertainty

I One of the major systematics to be controlled is the uncertainty of the
polarization sensitive angle of a polarimeter.

I Miscalibrated polarization angles induce a mixing of E- and B-modes
which obscures the primordial B-mode signal.

I In-flight polarization angle calibration strategies only reach a ∼ 0.5◦

uncertainty.1

I We introduce an iterative angular power-spectra maximum
Likelihood-based method to calculate the polarization angles (ᾱ) from
the multi-frequency signal by nulling the EB power-spectra.

1
This uncertainty might be lower by a dedicated observational campaign for a better characterization of some astrophysical sources

such as the Crab Nebula.



Formalism



Formalism I. Basis

The observed E and B spectra of the i-th channels are rotated as follows:(
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It is a modification of the Minami et al. 2019 methodology.



Formalism II. Assumptions

Assuming:

I Small angle approximation: α� 1→ tan(α) ∼ α.

I The covariance matrix C does not depend on α. To correct the
mismatch induced by this approximation, we perform an iterative
approach that updates the polarization angle in the covariance matrix
with the one estimated in the previous step.

With these approximations, we achieve a linear system which enable us to
obtain analytical equations to calculate the rotation angles. Moreover, the
uncertainties can be evaluated from the Fisher matrix. This results in a very
fast computational methodology.



Formalism III. Covariance Matrix Implementation

I The covariance matrix depends on C̃XY
` which is the ensemble

average XY power-spectrum (X ,Y ∈ {E,B})
o Due to the lack of a reliable model of the foregrounds cross-spectra,

we require a good estimator of it from the observed power-spectra.
I We have tried several estimators:

The observed power-spectra.
The observed power-spectra binned.
The observed power-spectra smooth with a square window `-function
convolution.

I Any of these previous approximations for the foregrounds cross-spectra
model produce biases when a full covariance matrix including all the
possible cross power-spectra are considered. Therefore in this work we
use only the auto spectra.



Formalism IV. Rotation Angles Equations

The rotation angles are obtained solving the following system:

Ωᾱ =
1
4
η̄ ,

where Ω and η̄ elements are
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And the Fisher matrix is calculated with:
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Simulations



Simulations with Systematic

I Rotation Angles.
I Sky signal

CMB.
Polarized Foregrounds:
synchrotron and dust.

I Instrumental Noise.
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Rotation Angles

Requirements with channels correlations.
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The covariance among channels:

Cα =

MLFT 0 0
0 MMFT 0
0 0 MHFT

 ,

Using L the Cholesky decomposition of
Cα, the rotation angles:

ᾱch = Lx̄ ,

where x̄ random samples from the
standard Gaussian distribution.

Based on the requirements shown by Enrique Mart́ınez-González on Monday.



Sky Signal. CMB and foregrounds

CMB Q

-18.5596 21.4709

synchrotron Q

-9.38574 28.0146

dust Q

-6.2462 16.3174

CMB U

-21.9175 19.2502

synchrotron U

-8.24336 6.57163

dust U

-8.73787 12.3867

CAMB. Lewis et al., astro-ph/9911177/ Planck 2018 results. VI. Cosmological parameters, 1807.06209

Thorne et al., 1608.02841 (PySM)



Instrumental Noise. LiteBIRD-like Experiment
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Validation with simulations



Convergence
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Multipole Range
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Multipole Range
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Covariance Model. Estimator
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I all `: original power-spectra.
(`min = 3-`max = 600)

I binned (uniform nbin=50):
power-spectra binned in ` chunks of
equal length (n|ell ∼ 12 per bin).

I binned (log nbin=10): power-spectra
binned in ` chunks with logarithmically
increasing length.

I smooth: power-spectra smoothed by
two subsequent convolutions with
square window functions (n` = 5,
n` = 10).



Uncertainty and Bias
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Independent Telescope Study
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Correlations among Rotation Angles
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Correlations among Rotation Angles
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Correlations among Rotation Angles
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Correlations among Rotation Angles

HFT 195

HFT 235

HFT 280

HFT 337

HFT 195

HFT 402

HFT 235 HFT 280 HFT 337 HFT 402



Impact on r



Assesing the systematic

We perform component separation on the following set of maps:

I Non-rotated maps. The original signal maps without any rotation.

I Rotated maps. The previous maps with the corresponding rotation
applied.

I De-rotated maps. The resulting maps after de-rotating the rotated
maps with the solutions obtained with the described methodologies.

To study the impact introduced by the systematic.



Parametric Component Separation

The likelihood for a given pixel is:

L(θp|d̄p) =
1√

(2π)2Nch det(C)
exp

(
−1

2

(
d̄p −m

(
ν̄; θp

))T
C−1

(
d̄p −m

(
ν̄; θp

)))
,

The sky model is:[
SQ

SU

]
=

[
cQ

cU

]
︸ ︷︷ ︸
CMB

+

[
as

Q
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U

](
ν

νs

)βs+cs(ν/νcs)

︸ ︷︷ ︸
Synchrotron

+

[
ad

Q

ad
U

](
ν

νd

)βd B(ν,Td)

B(νd ,Td)︸ ︷︷ ︸
Dust

The amplitudes and spectral parameters are updated in different steps.
Convergence is obtained quickly.
Component separation methodology used is an improved version of the one presented in de la Hoz, E.,
et al. JCAP 2020.06 (2020): 006



Map Processing before component separation

non-rotated/rotated/de-rotated maps
converted to spherical harmonics

a i
`m deconvolved by corresponding LiteBIRD’s i-th channel beam

Convolve a i
`m with a Gaussian beam of 132 arcmin ∀i

Downgrade to nside 64 maps



Power-spectra residuals comparison
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One minute summary



One Minute Summary

I Current polarization angles calibration strategies have uncertainties of ∼ 0.5◦.
Primordial B-mode search requires more stringent limits.

I We introduce an iterative angular power-spectra maximum likelihood-based method
to calculate the polarization angles (ᾱ) from the multi-frequency signal by nulling the
CEB

` .
I Two major assumptions are made: i) the rotation angles are small (.6deg), and, ii) the

covariance matrix does not depend on ᾱ.
I We obtain an analytical linear system which leads to a very fast computational

implementation.
I With this methodology we reach uncertainties on the order of a few arc minutes.
I We show that this accuracy is enough to remove the systematics by applying a

parametric component separation technique to recover the CMB in three scenarios: i)
rotated signal, ii) non-rotated signal, and iii) de-rotated signal.

I We find that the systematic introduced by leftover polarization angles in r is removed
after the signal is corrected.
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