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❖ We propose a simple extension to the usual power-spectrum-based likelihood which 
accounts for spatially varying spectral indices

➢ We look at the minimal moments-space expansion at the power-spectrum level for 
B-modes in ground based telescopes

❖ We test the method on simulations of varying complexities and on real data and we find 
that it is able to correct for the kind of biases that we expect for future CMB B-modes 
experiments
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Detecting B-modes

r ~ O(10-2-10-3) 

CMB-S4, LiteBIRD target!

x 103 

RecombinationReionization

Small B-mode amplitude:

- Need sensitive instruments 

- Need good calibration 

- Removal of foregrounds 

to reduce bias on r.

x 107 
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Focus of this work

Small B-mode amplitude:

- Need sensitive instruments 

- Need good calibration 

- Removal of foregrounds 

❖ Component separation 
to isolate the CMB signal 

❖ Characterize varying 
foreground emission to 
properly model the sky

Recombination
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Focus of this work

Small B-mode amplitude:

- Need sensitive instruments 

- Need good calibration 

- Removal of foregrounds 

Additional challenges for 
ground-based experiments:

- Atmosphere

- Ground pickup

Recombination
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Foregrounds
    Observed sky   =   (Polarized dust + synchrotron) + Polarized CMB
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Figure credit: J. Errard, adapted



Foregrounds
    Observed sky   =   (Polarized dust + synchrotron) + Polarized CMB

❖

❖ Acceleration of cosmic rays 
electrons in the Galactic 
magnetic field

❖ Thermal emission from 
interstellar dust grains
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Foregrounds

Set of parameters 
    Observed sky   =   (Polarized dust + synchrotron)+ Polarized CMB

Method Model Results Conclusion Overview 8



Foregrounds SEDs

Dust: Modified Blackbody

Synchrotron: Power law

CMB: Blackbody

TOTAL 

FOREGROUNDS
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Figure credit: 10.1088/1475-7516/2019/02/056, adapted 

https://iopscience.iop.org/article/10.1088/1475-7516/2019/02/056


Simons Observatory
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Simons Observatory
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(Spatially-varying) Foregrounds
Set of parameters → space dependent  

SEDs spatially varying!

        Cleaning methods: 

Map-based: model the contribution of each component at 
each pixel and at each frequency (real space)

- Exact likelihood function in real space  
- BUT Prohibitive computational cost for l max > few hundreds 

Cl -based: compute all spectra between different frequencies 
(harmonic space)

- Easier to account for systematics effects in harmonic space 
- BUT Harder to account for spatial variations

Q: How do we remove 
spatially varying 
foregrounds?
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Foregrounds removal methods

Cl -based: compute all spectra between 
different frequencies (harmonic space)

- Easier to account for systematics effects in 
harmonic space 

- BUT Harder to account for spatial variations

Map-based: model the contribution 
of each component at each pixel and 
at each frequency (real space)

- Exact likelihood function in real 
space  

- BUT Expensive computational cost 
for l max > few hundreds 
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Foregrounds removal methods

Especially Ideal for ground based 
experiments (e.g. SO, CMB-S4)
→ Additional systematics e.g. 
filtering, ground pickup, atmospheric 
noise, ...

Required to analyse data with 
higher sensitivity over wider 
patches of the sky for the 
forthcoming B-modes experiments
 Need to address this!

Cl -based: compute all spectra between 
different frequencies (harmonic space)

- Easier to account for systematics effects in 
harmonic space 

- BUT Harder to account for spatial variations

Map-based: model the contribution 
of each component at each pixel and 
at each frequency (real space)

- Exact likelihood function in real 
space  

- BUT Expensive computational cost 
for l max > few hundreds 
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(I,Q,U) signal maps 

Expand map in spherical harmonics:

Power Spectra

Method

Compute Likelihood
Using:

- Covariance matrix 
- Fiducial Cl 
- Noise Cl

→ Measure r 
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Method

Q: How do we model spatially varying 
components? 

1. Specify templates for spectral indices 
and amplitudes

2. Propagate model from map to Cl 
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(I,Q,U) signal maps 

Expand map in spherical harmonics:

Power Spectra

Compute Likelihood
Using:

- Covariance matrix 
- Fiducial Cl 
- Noise Cl

→ Measure r 



Formalism
1)  Spectral indices 

Assume small spatial variation

Based on existing ``moment expansion'' Chluba, Hill & Abitbol (2017)
Taylor expand SEDs, additional parameters 

Amplitudes
for dust, synchrotron, spectral indices: power-laws

            , 

Add assumptions somewhere
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https://arxiv.org/abs/1701.00274


2) Propagate moments into the power spectrum

- Parameterize the Cl of the moment parameters
- Model SED spectral index as power law: 
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2) Propagate moments into the power spectrum

- Parameterize the Cl of the moment parameters Additional parameters
- Model SED spectral index as power law:                 
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Simplifying assumptions:

1. spectral index variations are 
Gaussianly distributed

2. foreground amplitudes and 
spectral index variations are 
uncorrelated

3. spectral index variations of 
different foreground sources 
are uncorrelated
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2) Propagate moments into the power spectrum
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(I,Q,U) signal maps 

Expand map in spherical 
harmonics 

Include instrument 
(e.g. bandpass, beams)

Add Noise + splits

Apply mask

Power Spectra

→ Compute binned PS
→ Covariance matrix

Simulations

1) Gaussian simulations
2) Realistic simulations (PySM)
3) Simulations challenge
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Application to Gaussian simulations with increasing spectral indices variation 

biases on r (1-2 σ) 
are corrected

small penalty in 
uncertainty on r (~30%) 
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Application to PySM simulations
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bias >1σ gets corrected 



Simulation challenge
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Simulation challenge
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Amplitudes:
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Gaussian 

PySM templates
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Simulation challenge

Foreground spectral indices:

Gaussian fields w/ std σβ
 
PySM templates
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Simulation challenge

Thermal dust spectrum:

Modified Black Body 

Hensley & Draine [1611,08607]

 
Van Syngel et al [1611.02577]

 

https://arxiv.org/abs/1611.08607
https://arxiv.org/abs/1611.02577
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Amplitudes:

Foreground spectral indices:

Thermal dust spectrum:

Red: results with a bias |rfit − rtrue| ≥ 2σr 
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Gaussian 

PySM templates

Modified Black Body 

Hensley & Draine [1611,08607]

 

Gaussian fields w/ std σβ
 
PySM templates

Simulation challenge

Van Syngel et al [1611.02577]

 

https://arxiv.org/abs/1611.08607
https://arxiv.org/abs/1611.02577


- Consistent with BK15X results 
BICEP2 & Keck Array Collaboration 
(2018)

- Adding spatial variability shifts the 
posterior down

- Small penalty in uncertainty on r (~20%) 

- Comparable to the effects of decorrelation

Application to BK15 data 
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Without moments
Including moments

https://arxiv.org/pdf/1810.05216v1.pdf
https://arxiv.org/pdf/1810.05216v1.pdf


❖ Implemented component separation method accounting for moment expansion of the
dust/synchrotron moments in power-spectrum space
➢ Moment expansion of a foreground SED is a general parametrization of additional features of 

the underlying distribution of physical parameters
➢ Very few a priori assumptions, captures the spectral and spatial variations of the SED

❖ Study limited to the analysis of primordial B-modes from ground-based facilities 
➢ targeting the recombination bump on scales 30 < l < 300
➢ its applicability to space missions may be limited, the use of pixel-based methods is likely more 

appropriate.

❖ It is a promising tool to model the foreground components at a level of precision that  
will be useful in the analysis of future observatories to characterize spatially-varying 
foregrounds and marginalize over them in order to achieve reliable constraints on r

Take-away message
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Thank you!
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