Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles (1 min slide)

Cosmic birefringence

- With miscalibration, we can only measure the sum, $\alpha + \beta$
- \triangleright We develop a method to determine α with the Galactic foreground and break the degeneracy!

Let's apply this method to other future and existing experiments!

Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles

Based on:

- PTEP, 2019, 8, August (2019)
- PTEP, 2020, 6, June (2020)
- PTEP, 2020, 10, October (2020)

Yuto Minami (RCNP, Osaka Univ.)

Pre-introduction

A new paper related to this talk was published

- ➤ "New Extraction of the Cosmic Birefringence from the Planck 2018 polarisation Data", Yuto Minami and Eiichiro Komatsu, Phys. Rev. Lett. 125, 221301, 2020
 - https://doi.org/10.1103/PhysRevLett.125.221301

However, today, I will only talk about the methodology used in the analysis, since this workshop is for "systematics and calibration"

> I hope you can apply this method to your observed data

Overview

- 1. "Simultaneous determination of miscalibration angles and cosmic birefringence", PTEP, 2019, 8, August (2019)
 - \triangleright Determine miscalibration angle, α , only with observed power spectra
 - Use prior knowledge of CMB power spectra to determine additional angle, β
- 2. "Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles II: Including cross-frequency spectra", PTEP, 2020, 10, October (2020)
 - > Application to multi channel (detector) observations
 - Include cross correlation among different frequency channel
 - Improvement of uncertainty
- 3. "Determination of miscalibrated polarisation angles from observed CMB and foreground EB power spectra: Application to partial-sky observation", PTEP, 2020, 6, June (2020)
 - ➤ Include ℓ-to-ℓ covariance
 - Use prior knowledge of CMB power spectra to determine foreground EB correlation

Overview

- 1. "Simultaneous determination of miscalibration angles and cosmic birefringence", PTEP, 2019, 8, August (2019)
 - \triangleright Determine miscalibration angle, α , only with observed power spectra
 - Use prior knowledge of CMB power spectra to determine additional angle, β
- 2. "Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles II: Including cross-frequency spectra", PTEP, 2020, 10, October (2020)
 - > Application to multi channel (detector) observations
 - Include cross correlation among different frequency channel
 - Improvement of uncertainty
- 3. "Determination of miscalibrated polarisation angles from observed CMB and foreground EB power spectra: Application to partial-sky observation", PTEP, 2020,
- 6, June
- This talk only includes above 2 topics

➤ Use prior knowledge of CMB power spectra to determine foreground EB correlation

"Simultaneous determination of miscalibration angles and cosmic birefringence", PTEP, 2019, 8, August (2019)

Miscalibration

 \blacktriangleright Miscalibration of detector rotation angle (α) creates spurious B-mode from E-mode

$$C_{\ell}^{BB,o} = C_{\ell}^{EE} \sin^2(2\alpha) + C_{\ell}^{BB} \cos^2(2\alpha) \dots (1)$$

observed before detectors

We need to determine α to calibrate rotation angle

 \triangleright In past experiments, this α was calculated assuming that EB correlation of CMB is zero:

$$C_{\ell}^{EB,o} = \frac{1}{2} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB} \right) \sin(4\alpha) \quad \cdots (2)$$
From theory

"Self-calibration" by Keating, Shimon, & Yadav (2013).

Restriction of "self-calibration" using theory

Foreground emissions should be small

- \triangleright Because foreground signals also have α ,
 - > We need to know the foreground model
 - > We need to mask the Galactic plane

Cosmological EB correlation should be zero

> We lose sensitivity to cosmic birefringence

To solve these issues

We relate observed E- and B- modes to the intrinsic ones as

$$E_{\ell,m}^{o} = E_{\ell,m} \cos(2\alpha) - B_{\ell,m} \sin(2\alpha)$$

$$B_{\ell,m}^{o} = E_{\ell,m} \sin(2\alpha) + B_{\ell,m} \cos(2\alpha)$$
...(3)

From these equations, we find

$$C_{\ell}^{EB,o} = \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) \tan(4\alpha) + \frac{C_{\ell}^{EB}}{\cos(4\alpha)} \quad \cdots (4)$$
G. B. Zhao et al. (2015)

Our work [Y.Minami et al. (2019)]

- \triangleright We can estimate α with only observed data
- ➤ If we assume theory CMB power spectra, we can estimate an additional angle!

Cosmic birefringence

Cosmic birefringence

During the long travel from the last scattering surface to observer, parity-violating physics, e.g., axion-like particles (ALPs), rotate CMB linear polarisation by

Carroll, Field & Jackiw (1990); Harari & Sikivie (1992); Carroll (1998); Fujita, Minami, et al. (2020)

- \triangleright Foreground: rotated only by α
- \triangleright CMB: rotated by $\alpha + \beta$

Equations including birefringence rotation:

The coefficients become

$$\begin{split} E_{\ell,m}^{\mathrm{o}} &= E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) - B_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) - B_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + \boxed{E_{\ell,m}^{\mathrm{N}}} \\ B_{\ell,m}^{\mathrm{o}} &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) + \boxed{B_{\ell,m}^{\mathrm{N}}} \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) + \boxed{B_{\ell,m}^{\mathrm{N}}} \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{N}} \cos(2\alpha) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha + 2\beta) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + B_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) + B_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha + 2\beta) \\ &= E_{\ell,m}^{\mathrm{CMB}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{CMB}} \sin(2\alpha) \\ &= E_{\ell,m}^{\mathrm{fg}} \sin(2\alpha) + E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) \\ &= E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) + E_{\ell,m}^{\mathrm{fg}} \cos(2\alpha) \\ &= E_{\ell,m}^{\mathrm{fg}} \cos($$

From them, we derived

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\langle C_{\ell}^{EE,CMB} \rangle - \langle C_{\ell}^{BB,CMB} \rangle \right) \quad \cdots (6)$$

$$+ \frac{1}{\cos(4\alpha)} \langle C_{\ell}^{EB,fg} \rangle + \frac{\cos(4\beta)}{\cos(4\alpha)} \langle C_{\ell}^{EB,CMB} \rangle \cdot$$
 Assume these to be zero

Therefore, we can determine both miscalibration and birefringence-rotation angles simultaneously!

Construct a likelihood for determination of α and β

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\langle C_{\ell}^{EE,CMB} \rangle - \langle C_{\ell}^{BB,CMB} \rangle \right) \quad \cdots \quad (6)$$

$$+ \frac{1}{\cos(4\alpha)} \langle C_{\ell}^{EB,fg} \rangle + \frac{\cos(4\beta)}{\cos(4\alpha)} \langle C_{\ell}^{EB,CMB} \rangle . \quad \text{Assume these to be zero}$$

$$-2 \ln \mathcal{L} = \sum_{\ell=2}^{\ell_{\text{max}}} \frac{\left[C_{\ell}^{EB,\text{o}} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}} \right) - \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,\text{CMB}} - C_{\ell}^{BB,\text{CMB}} \right) \right]^{2}}{\text{Var} \left(C_{\ell}^{EB,\text{o}} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,\text{o}} - C_{\ell}^{BB,\text{o}} \right) \right) \qquad \dots (7)$$

Minimise $-2\ln\mathcal{L}$ to determine α and β

Variance

With full-sky power spectra (not cut-sky pseudo power spectra), we can calculate variance exactly as

$$\operatorname{Var}\left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right]$$

$$= \left\langle \left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right]^{2} \right\rangle - \left\langle C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o}) \tan(4\alpha)/2\right\rangle^{2}$$

$$= \frac{1}{2\ell+1} \left\langle C_{\ell}^{EE} \right\rangle \left\langle C_{\ell}^{BB} \right\rangle + \frac{\tan^{2}(4\alpha)}{4} \frac{2}{2\ell+1} \left(\left\langle C_{\ell}^{EE} \right\rangle^{2} + \left\langle C_{\ell}^{BB} \right\rangle^{2} \right)$$

$$- \tan(4\alpha) \frac{2}{2\ell+1} \left\langle C_{\ell}^{EB} \right\rangle \left(\left\langle C_{\ell}^{EE} \right\rangle - \left\langle C_{\ell}^{BB} \right\rangle \right) + \frac{1}{2\ell+1} \left(1 - \tan^{2}(4\alpha) \right) \left\langle C_{\ell}^{EB} \right\rangle^{2}.$$

$$= 0$$

- ightharpoonup We approximate $\langle C_\ell^{XY} \rangle \approx C_\ell^{XY,o}$
- \triangleright We ignore $\langle C_{\ell}^{EB} \rangle^2$ term because it's small and yields bias
 - Fiven if $\langle C_\ell^{EB} \rangle \approx 0$, $C_\ell^{EB,o}$ has a small non-zero value with fluctuation, and $C_\ell^{EB,o}$ yields bias

Sky simulation setup for the validation

- Components
 - Thermal dust: modified black body
 - Synchrotron: simple power law
 - CMB: tensor-to-scalar ratio r = 0
 - Noise: white noise with LiteBIRD polarisation sensitivity
- \triangleright N_{side} is 512 and I_{max} is 1024
- Compute EB power spectra from full-sky maps

Sky simulation setup for the validation: LiteBIRD

We extract representative 3 frequencies to show how the method works

	Frequency	polarisation sensitivity (uK')	Beam size in FWHM (arcmin)
СМВ	119	7.6	25
Dust + CMB	195	5.8	20
Dust	337	19.5	20

LiteBIRD parameters extracted from M. Hazumi et al., J. Low Temp. Phys. 194, 443 (2019).

Before the simultaneous determination: α only case

If we assume $\beta_{in}=0$, we can set $\beta=0$ in the Likelihood as,

$$-2\ln\mathcal{L} = \frac{\left[C_{\ell}^{EB,o} - \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) \tan(4\alpha)\right]^{2}}{\operatorname{Var}\left(C_{\ell}^{EB,o} - \frac{1}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) \tan(4\alpha)\right)}. \quad \cdots (10)$$

With this likelihood, we can determine α .

α only estimation at 195 GHz

We set β_{in} =0 and try whether we can determine α_{in}

We can recover the correct α without theoretical power spectra

Simultaneous determination with simulations: at LiteBIRD 195 GHz

 $\sigma(\alpha) = 9.6$ arcmin and $\sigma(\beta) = 11$ arcmin (Previous 1σ upper bound for β is 38 arcmin by Planck)

We can recover the correct α and β simultaneously

How does it work?

Simulation with future CMB data (LiteBIRD)

- \succ The CMB signal determines the sum of two angles, $\alpha+\beta$
 - Diagonal line
- \triangleright The FG determines only α
- Mid freq.: breaking the degeneracy with FG signal!
 - $\triangleright \sigma(\beta) \sim \sigma(\alpha)$, since $\sigma(\alpha + \beta) \ll \sigma(\alpha)$

"Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles II: Including cross—frequency spectra", PTEP, 2020, 10, October (2020)

Application to multi channel (detector) observations

- \triangleright Modern CMB experiments N_{ν} frequency channels
 - \triangleright Auto correlation: N_{ν}
 - \triangleright Cross correlation: $\frac{N_{\nu}(N_{\nu}-1)}{2}$

Including cross correlation, we can gain significantly more information

Extension with cross correlation:

- ightharpoonup Consider two channels with different miscalibration angles, $lpha_i$ and $lpha_j$
- > When we take ensemble average of cross correlation between the two channels, we find

$$\begin{pmatrix} \langle C_{\ell}^{E_{i}E_{j},o} \rangle \\ \langle C_{\ell}^{B_{i}B_{j},o} \rangle \end{pmatrix} = \mathbf{R}(\alpha_{i}, \alpha_{j}) \begin{pmatrix} \langle C_{\ell}^{E_{i}E_{j},fg} \rangle \\ \langle C_{\ell}^{B_{i}B_{j},fg} \rangle \end{pmatrix} + \mathbf{R}(\alpha_{i} + \beta, \alpha_{j} + \beta) \begin{pmatrix} \langle C_{\ell}^{E_{i}E_{j},CMB} \rangle \\ \langle C_{\ell}^{B_{i}B_{j},CMB} \rangle \end{pmatrix} + \delta_{i,j} \begin{pmatrix} \langle C_{\ell}^{E_{i}E_{i},N} \rangle \\ \langle C_{\ell}^{B_{i}B_{i},N} \rangle \end{pmatrix},$$

$$\langle C_{\ell}^{E_{i}B_{j},o} \rangle = \vec{R}^{T}(\alpha_{i},\alpha_{j}) \begin{pmatrix} \langle C_{\ell}^{E_{i}E_{j},fg} \rangle \\ \langle C_{\ell}^{B_{i}B_{j},fg} \rangle \end{pmatrix} + \vec{R}^{T}(\alpha_{i} + \beta,\alpha_{j} + \beta) \begin{pmatrix} \langle C_{\ell}^{E_{i}E_{j},CMB} \rangle \\ \langle C_{\ell}^{B_{i}B_{j},CMB} \rangle \end{pmatrix},$$

where

$$\mathbf{R}(\theta_i, \theta_j) = \begin{pmatrix} \cos(2\theta_i)\cos(2\theta_j) & \sin(2\theta_i)\sin(2\theta_j) \\ \sin(2\theta_i)\sin(2\theta_j) & \cos(2\theta_i)\cos(2\theta_j) \end{pmatrix},$$

$$\vec{R}(\theta_i, \theta_j) = \begin{pmatrix} \cos(2\theta_i)\sin(2\theta_j) \\ -\sin(2\theta_i)\cos(2\theta_j) \end{pmatrix}.$$

Log-likelihood:

From the equations, we find

$$\begin{pmatrix} -\vec{R}^{\mathrm{T}}(\alpha_i, \alpha_j) \mathbf{R}^{-1}(\alpha_i, \alpha_j) & 1 \end{pmatrix} \begin{pmatrix} \langle C_{\ell}^{E_i E_j, o} \rangle \\ \langle C_{\ell}^{B_i B_j, o} \rangle \\ \langle C_{\ell}^{E_i B_j, o} \rangle \end{pmatrix}$$

$$A_{ij}\vec{C}_{\ell}^{o,ij}$$

$$-\left[\vec{R}^{\mathrm{T}}(\alpha_{i}+\beta,\alpha_{j}+\beta)-\vec{R}^{\mathrm{T}}(\alpha_{i},\alpha_{j})\mathbf{R}^{-1}(\alpha_{i},\alpha_{j})\mathbf{R}(\alpha_{i}+\beta,\alpha_{j}+\beta)\right]\begin{pmatrix}\langle C_{\ell}^{E_{i}E_{j},\mathrm{CMB}}\rangle \\ \langle C_{\ell}^{B_{i}B_{j},\mathrm{CMB}}\rangle \end{pmatrix} = 0$$

$$B_{ij}\vec{C}_{\ell}^{CMB,ij}$$

> From this equation, we construct a log-likelihood,

$$\ln \mathcal{L} = -\frac{1}{2} \sum_{\ell=2}^{\ell_{\text{max}}} \left(\mathbf{A} \vec{C}_{\ell}^{\text{o}} - \mathbf{B} \vec{C}_{\ell}^{\text{CMB,th}} \right)^{T} \mathbf{C}^{-1} \left(\mathbf{A} \vec{C}_{\ell}^{\text{o}} - \mathbf{B} \vec{C}_{\ell}^{\text{CMB,th}} \right), \quad \dots (8)$$

where

$$\mathbf{C} = \mathbf{A} \operatorname{Cov} \left(\vec{C}_{\ell}^{o}, \vec{C}_{\ell}^{o} \right) \mathbf{A}^{\mathbf{T}}$$

Approximated covariance

For each element, we use power spectra from one realization instead of ensemble averaged ones

$$\operatorname{Cov}(C_{\ell}^{X,Y}, C_{\ell}^{Z,W}) = \frac{1}{(2\ell+1)} (\langle C_{\ell}^{X,Z} \rangle \langle C_{\ell}^{Y,W} \rangle + \langle C_{\ell}^{X,W} \rangle \langle C_{\ell}^{Y,Z} \rangle)$$

$$\approx \frac{1}{(2\ell+1)} (C_{\ell}^{X,Z} C_{\ell}^{Y,W} + C_{\ell}^{X,W} C_{\ell}^{Y,Z}).$$

➤ In addition, we neglect off-diagonal elements because their fluctuation makes the approximation worse

$$\begin{aligned} &\operatorname{Cov}(\boldsymbol{C}_{\ell}^{\overrightarrow{o},ij},\boldsymbol{C}_{\ell}^{\overrightarrow{o},pq^T}) \\ &= \begin{pmatrix} \operatorname{Cov}(\boldsymbol{C}_{\ell}^{E_{i}E_{j},o},\boldsymbol{C}_{\ell}^{E_{p}E_{q},o}) & \mathbf{0} & \mathbf{0} \\ & \mathbf{0} & \operatorname{Cov}(\boldsymbol{C}_{\ell}^{B_{i}B_{j},o},\boldsymbol{C}_{\ell}^{B_{p}B_{q},o}) & \mathbf{0} \\ & \mathbf{0} & \operatorname{Cov}(\boldsymbol{C}_{\ell}^{E_{i}B_{j},o},\boldsymbol{C}_{\ell}^{E_{p}B_{q},o}) \end{pmatrix} \end{aligned}$$

Binning

 \blacktriangleright Because statistical fluctuation of power spectra for each ℓ makes the approximation worse, we reduce the fluctuation by binning the power spectra,

$$C_b^{X,Y} = \frac{1}{\Delta \ell} \sum_{\ell \in b} C_\ell^{X,Y}.$$

We find corresponding covariance,

$$\operatorname{Cov}(C_b^{X,Y}, C_b^{Z,W}) = \frac{1}{\Delta \ell^2} \sum_{\ell \in b} \operatorname{Cov}(C_\ell^{X,Y}, C_\ell^{Z,W}).$$

We simply use these binned variables to calculate the log-likelihood

Extend to cross frequency spectra: LiteBIRD 6 freqs. From 15 freqs

Summary

- Cosmic birefringence and miscalibration angle are degenerate in the CMB signal
- We lift the degeneracy using foreground power spectra
- ➤ We can constrain the birefringence angle with the precision of 6 arcmin with LiteBIRD

Why don't you apply this method to other future and existing experiments?