Impacts of ice clouds in POLARBEAR

Satoru Takakura Kavli IPMU

• Clouds are polarized.

S. Takakura et al 2019 ApJ 870 102 [arXiv:1809.06556]

2020/12/03 CMB systematics & calibration workshop 2020

Impacts of ice clouds in POLARBEAR Satoru Takakura (Kavli IPMU)

Outline

- Introduction
- Polarization from clouds
- Polarized bursts in POLARBEAR data
- Estimation of systematics
- Discussion

CMB observation from ground

Atmospheric turbulence causes higher noise at larger angular scales.

If atmosphere is not polarized

We can separate polarization component by

- Differencing orthogonal detector pair
- Polarization modulation

Atmosphere does not affect polarization measurements.

Is atmosphere polarized?

Zeeman splitting of oxygen

- Keating et al. (1998), Hanany & Rosenkranz (2003)
- Polarization signal
 - Linear: ~ 1 nK
 - Circular: ~ 100 μK
 - Measured by CLASS (2020)

- Pietranera et al. (2007)
- Polarization signal
 - Linear: ~ 1 mK

Ice crystals in clouds

- Particle size: $D_e \cong 20-100 \ \mu m$
- Number density: $n \cong 10^4 10^5 \text{ m}^{-3}$
- Thickness of clouds: $\Delta h \cong 10^3$ m
- Total mass per unit area: $IWP \cong 1-10 \text{ g m}^{-2}$
- Shape
 - Column
 - Plate
 - Polycrystalline

Circumhorizontal arc by horizontally aligned plate-shape crystals

PWV 1mm = 10 g m⁻²

7

by Grant Teply

Scattering by cloud particles

- **Rayleigh Scattering**
- Cross section \propto (particle size)⁶ (frequency)⁴
- Optical depth: $\tau \sim 10^{-9} 10^{-4}$ @150GHz

Polarization

• Curvature of the Earth Polarization fraction

$$\approx \frac{3}{4}\sqrt{\frac{h}{2R}}\sin^2\theta$$

• Horizontal alignment

POLARBEAR

- Atacama desert in Chile (5,200 m)
- Primary mirror 2.5 m

Antenna

TES

- Frequency band 150 GHz (2mm)
- Beam resolution 3.5 arcmin.
- Low temperature receiver system
- 1,274 TES bolometers at 250mK
- Instantaneous sensitivity $23\mu K\sqrt{s}$

Detector array

637 pixels 274 TESes

Receiver cryostat

CMB

ACT.

10

Observation history

 Since 2014, we started large patch observation with a rotating HWP.

Example of polarized bursts

We occasionally find horizontally polarized [⊆] bursts during cloudy observations.

We confirmed coincidence using 3 years of data.

Impacts on CMB measurements?

- Data selection, observation efficiency
- Systematic error due to residuals
- (Polarization angle calibration)

Polarized burst detection

- Variance ratio between Q&U timestreams
 - Q: detector noise + cloud polarization
 - U: detector noise

* Other noises (I \rightarrow P leakage, ground signal) are filtered before.

Variance ratio - 1

= (Cloud SNR)²

2020/12/03 CMB systematics & calibration workshop 2020

Modeling cloud probability

- Histogram of N_{ℓ} from observations with bursts
 - We model the histogram as log-normal distribution with cut-off due to threshold of data selection.

	# Obs	
Total	~7200	100%
Burst detected	~1300	18%
Fit integral	~1900	26%
Residual?	~600	8%
No cloud?	~5300	74%

Estimation of averaging effect

• Suppose averaging all data below threshold.

More data we include

- \circ White noise \rightarrow decrease
- \circ Cloud residuals \rightarrow increase

- Systematics on CMB spectra
- Assuming spectral index of ℓ^{-3}

Systematics of residual clouds is small enough for POLARBEAR.

Scaling for future experiments

Sensitivity

- Need to tighten threshold.
 - How? Detector or external monitor?
 - Efficiency loss won't be so large.

- Observation band
 ∞(frequency)⁴
- Scan strategy Patch size, Elevation

Summary

- Clouds are polarized due to Rayleigh scattering.
- Using POLARBEAR data, we confirmed coincidence of polarized bursts and clouds.
- Cloud signal is well modeled as 1/f noise with spectral index of ~4 in PSD and ~3 in N_{ℓ} .
- We modeled probability of clouds and estimated systematics due to residuals.
- We drop ~10% of data due to polarized bursts.
- With current detection method, systematics is smaller than statistical sensitivity.