Multimessenger Study of Heavy Dark Matter

Toshihiro Fujii (Hakubi-Kyoto U.)

Nagisa Hiroshima (Toyama U.)

Kohta Murase (Penn State/YITP)

Atsushi Naruko (YITP)

Masato Yamanaka (Osaka City U.)

"What is Dark Matter?"

February 6 2021

Focus of A02 Group

- >10 orders of magnitude in energy It may not be a desert
- Beyond LHC energies (energy frontier)
- More challenging for direct detection
- Indirect searches are much more important

Golden era of multimesssenger astrophysics has come!

Gamma-Ray Limits on Annihilating Dark Matter

Gamma-Ray Limits on Annihilating Dark Matter

CR & v Limits on Annihilating Dark Matter

Heavy Dark Matter?

- Thermal production of CDM, freeze-out (e.g., WIMP) unitarity bound: m_{DM} < 100 TeV (Griest & Kamionkowski 90)
- Nonthermal production (e.g., Wimpzilla) gravitational production $\Omega_X h^2 \approx \frac{T_R}{10^8 \text{ GeV}} \begin{cases} (m_X/H_I)^2, & m_X \ll H_I \\ \exp(-m_X/H_I), & m_X \gg H_I \end{cases}$ (e.g., Chung et al. 98)

More Mechanisms

Many recent ideas...

- Thermal production via combination of co-scattering and decay (Kim & Kuflik 19)
- Freeze-in through Higgs portal (Kolb & Long 19)
- Freeze-out in the hidden sector (e.g., Berlin+ 16)
- During the phase transition (e.g., Baker+ 20, Chway+ 20)
- Hawking radiation from primordial black holes
 - (e.g., Lennon+ 18, Mmorrison+ 19)

Decay of cosmic string

Largely Unexplored but Can be Relevant

Direct/indirect detection limits large parameter space allowed especially if DM is composite (e.g., Harigaya+ 16, Digman+ 19)

- the paucity of pulsars at GC
- 1-100 PeV DM help SNe la (Bramante 16 PRL)

Many Motivations to Give Birth to Heavy Guys

Multimessenger Power

IceCube Neutrinos

Decaying dark matter as the origin of IceCube neutrinos?

Feldstein+ 13, Esmaili & Serpico 14, Bhattacharya+ 14, Higaki+ 14, Rott+ 15...

Multi-Messenger Emission of Decaying Dark Matter

- Galactic: $\gamma \rightarrow \text{direct}$ (w. some attenuation), $e^{\pm} \rightarrow \text{sync.} + \text{inv.}$ Compton
- Extragalactic \rightarrow EM cascades during cosmological propagation

Testable with existing Fermi (sub-TeV γ) and air-shower (sub-PeV γ) data

Gamma-Ray Excess?

Excessive γ rays at high Galactic latitudes?

Upcoming diffuse TeV-PeV γ -ray searches are crucial & promising Tibet AS+MD, HAWC, LHAASO, ALPACA...

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Gamma-ray limits are improved independently of astrophysical modeling

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

tension w. diffuse VHE γ -ray limits that are important at ultrahigh energies

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Anti-proton constraints are competing for soft channels such as $DM \rightarrow bb$

Three messengers give complementary constraints on heavy DM

Theoretical Issues

- Energy frontier (ex. EW symmetry restoration, possible large Higgs multiplicity)
- Astrophysical information matters for the fate of SM particles
 - EM cascades occur inside objects ("smeared density profile")
 - CR propagation depends on halo properties (e.g., outflows) Not taken into account in most studies

From Dark to Bright in Future

Relevance of Search for Nearby DM Halos

High-Energy Particles as a Probe of Dark Matter

- v-DM scatterings induce deflection or time delays
 -> limits complementary to laboratory constraints (often providing the best constraints)
- Probing models invoked to alleviate substructure problems and/or the Hubble tension (e.g., Z' model with a MeV mediator)

Arguelles et al. 17 PRL

KM & Shoemaker 19 PRL

Gravitational Waves & New Physics

- cosmic strings (e.g., Dror+ 20 PRL)
- first-order phase transition (e.g., Schwaller 15 PRL)

Summary

- Many motivations for heavy dark matter
- Multi-messenger approaches are powerful
- Connection to various astrophysical problems
 → Great synergies with other groups
- Two postdocs will join the A02 group in 2021

内安革領域研究 Harbon 2023 一部のの2023 一部の2023 一の