

B02: Dark matter search with Subaru Prime Focus Spectrograph (PFS)

fuzzy DM, self-interacting DM, PBH, ... neutrino mass

高田 昌広 Masahiro Takada (Kavli IPMU)

Our team

- Masahiro Takada (Kavli IPMU)
- Naoyuki Tamura (Kavli IPMU, PFS PM)
- Yuki Moritani (Kavli IPMU)
- Kiyoto Yabe (Kavli IPMU)
- Naruhisa Takato (NAOJ)
- Tomomi Sunayama (Nagoya)
- Miho Ishigaki (NAOJ)
- Sakurako Okamoto (NAOJ)
- Ryuichi Takahashi (Hirosaki)
- Collaborators: PFS Cosmology and GA WG members including M. Chiba (Tohoku), R. Wise (JHU), J. Cohen (Caltech), E. Kirby (Caltech)

8.2m Subaru Telescope

We can use this beautiful sky to address fundamental physics of our Universe!

@ summit of Mt. Maunakea (4200m), Big Island, Hawaii

Prime Focus Spectrograph (under construction)

Spectrograph System (SpS) Prime Focus Instrument (PFI) WA \mathbf{E} : Compostor (WEC) wide field-of-view large aperture 2400 fibers (high multiplex) Fiber positioner "Cobra" Fiber Optical Cable and Connector System (FOCCoS) Metrology Camera System (MCS)

PFS blog: https://pfs.ipmu.jp/blog/ja/

PFS project based on international collaboration (7 countries) >200 members

the collaboration meeting at Caltech for Dec 9-13, 2019

On Sep 2 2020, the PFI focal plane got populated <u>FULLY</u> with <u>ALL</u> the 42 fiber positioner modules

PFS in a global context

	Instrument/Telescope	Collecting Area m ²	Field of view deg ²	Multiplex
4m class funded	4MOST	10.7	4.00	1400
	Mayall 4m / DESI	11.4	7.08	5000
	WHT / Weave	13.0	3.14	1000
8-10m class funded/operational	Subaru / PFS	52.8	1.25	2400
	VLT / MOONS	52.8	0.14	500
	Keck / DEIMOS	76.0	0.015	150
Proposed and unfunded	Megamapper	28.0	7.06	20,000
	Keck / FOBOS	76.0	0.087	1800
	MSE @ CFHT	78.5	1.52	4000
	ESO Spectel	113.1	4.90	5000

Via its wide field prime focus, PFS has the great survey capability

PFS dark matter science: dwarf galaxies

Note: this is just one "example" we can think of. Any new idea welcome!

DM dominated system

$$M \sim 10^{7-8} M_{\odot}$$
$$M \sim 10^{3-4} M_{\text{star}}$$

Size: ~1kpc Velocity dispersion-supported system

$$\sigma_v^2 \sim \frac{GM(< r)}{r}$$

Motion of member stars allow us to infer dynamical mass (note back/fore-ground stars; Horigome+20)

PFS can measure line-of-sight velocities of stars from Doppler shifts tin he measured spectra \Rightarrow give an estimate of dynamical (DM) mass

A power of PFS

What can we do with PFS?

- PFS promises high-precision measurements of matter (dark matter) distribution, for each of dwarf galaxies
 - Relatively cheap observations: only ~30 Subaru nights
- The improved measurement can be used for
 - Improve the estimation of J-factor and therefore the DM annihilation search from Fermi data (C02)
 - A definitive answer to the core-cusp problem (A01/C02)
 - If the cored profile is found, irrespectively of the star formation history (astrophysics) of each dwarf galaxy, it would be a strong evidence of non-CDM dark matter
 - Axion-like particle dark matter (FDM), and self-interacting dark matter (SIDM), etc. (A01/C02)
- Other targets for PFS observations: stellar stream, proper motions of halo stars, .. (not discussed today)

Microlensing search of macroscopic DM

Short time-scale ML events

take-home message

- DM search in optical wavelengths, with Subaru or other telescopes, hasn't been fully explored
- Subaru Prime Focus Spectrograph (PFS) is a very powerful instrument in a coming decade that will be in operation from 2023
 - Properties of dark matter distribution in dwarf galaxies (DM-dominated system): PFS flagship science that can be done with ~30 PFS nights
 - Stellar stream, kinematical structure of stars in the MW halo, ... (not discussed today)
 - Any new idea? (PFS will open up new opportunities! New idea welcome!)
- Microlensing search of DM (Subaru HSC now, and eventually LSST)
 - HSC M31 ~1hr-timescale microlensing + OGLE ~0.1days events imply axion stars formed from QCD axions? (Sugiyama & MT in prep.)
 - Primordial Black Holes (Sugiyama et al., in working progress, with new data)

Focal plane: Fiber positioner "Cobra"

Unveiling dark matter dist. in dwarf gals

Already HSC data of all interesting dwarf gals in hand

