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Ultralight Dark Matter
• Ultralight DM (<~1 eV) behaves as classical wave 

fields

• Laser interferometers are sensitive to tiny length 

changes from such oscillations
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Laser Interferometry
• measures differential arm length change
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Our Strategy
• Use both table-top optical cavities and large-scale

laser interferometric gravitational wave detectors
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Axion and Axion-Like Particles
• Pseudo-scalar particle originally introduced to solve 

strong CP problem (QCD axion)

• Various axion-like particles (ALPs) predicted by 

string theory and supergravity

• Many experiments to search for ALPs through

axion-photon coupling

Especially by using magnetic fields
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Previous Searches
Light Shining through Wall (ALPS etc.)

Haloscopes (ADMX etc.)

Helioscopes
(CAST etc.)

Xray, gamma-ray observations
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Polarization Modulation from Axions
• Axion-photon coupling (                 ) gives different 

phase velocity between left-handed and right-

handed circular polarizations

• Linear polarization

will be modulated
p-pol sidebands will be

generated from s-pol

• Search can be done

without magnetic field
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Optical Cavity to Amplify the Signal
• Polarization rotation is small for short optical path
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Optical Cavity to Amplify the Signal
• Polarization rotation is small for short optical path

• Optical cavities can increase the optical path, but 

the polarization is flipped by mirror reflections
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Optical Cavity to Amplify the Signal
• Polarization rotation is small for short optical path

• Optical cavities can increase the optical path, but 

the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation
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DANCE Setup

• Look for amount of modulated p-pol 

generation in each frequency
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Sensitivity of DANCE
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ADMX etc.

CAST

DANCE (ultimate)
round-trip 10 m
finesse 106

laser 100 W

SN1987A
M87

• Sensitivity better than CAST limit * Shot noise limited
1 year observation

I. Obata, T. Fujita, YM,
PRL 121, 161301 (2018)

https://doi.org/10.1103/PhysRevLett.121.161301


Sensitivity of DANCE
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ADMX etc.

CAST

DANCE
round-trip 1 m
finesse 2x105

laser 1 W

* Shot noise limited
1 year observation

(target for this project)

SN1987A
M87

• Sensitivity better than CAST limit

I. Obata, T. Fujita, YM,
PRL 121, 161301 (2018)

https://doi.org/10.1103/PhysRevLett.121.161301


Linear Cavities for Axion Search
• When finite light traveling time is considered, linear 

cavities can also be used

• Can be sensitive when the round-trip time equals

odd-multiples of axion oscillation period

• Long baseline linear cavities in gravitational wave 

detectors are suitable
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• Axion search and GW observation

can be done simultaneously
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DANCE KAGRA

• Axion search and GW observation

can be done simultaneously

• KAGRA and DANCE 

are complementary
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Gauge Bosons
• Possible new physics beyond the standard model:

New gauge symmetry and gauge boson

• New gauge boson can be dark matter

• B-L (baryon minus lepton number)
- Conserved in the standard model

- Can be gauged without additional ingredients

- Equals to the number of neutrons

- Roughly 0.5 per neutron mass, 

but slightly different between materials

Fused silica: 0.501

Sapphire: 0.510

• Gauge boson DM 

gives oscillating force
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Oscillating Force from Gauge Field
• Acceleration of mirrors

• Gauge boson mass and

coupling can be measured

by measuring the oscillating

mirror displacement

• Almost no signal for symmetric

cavity if cavity length is short
(phase difference is 10-5 rad @ 100 Hz for km cavity) 20
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Search with GW Detectors
• GW Detectors are 

sensitive to differential

arm length (DARM)

change

• Most of the signal

is cancelled out
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• KAGRA uses cryogenic

sapphire mirrors for

arm cavities, and

fused silica mirrors

for others
(LIGO/Virgo uses 

fused silica for all mirrors)
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Fused silica: 0.501

Sapphire: 0.510
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Search with KAGRA
• By measuring the 

lengths of auxiliary part

of the interferometer,

force difference

between sapphire 

and fused silica can be 

measured
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KAGRA Gauge Boson Sensitivity
• Auxiliary length channels have better sensitivity 

than DARM at low mass range

• Sensitivity better than equivalence principle tests
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Recent Progresses: KAGRA
• First (gravitational-wave) observing run in Feb-Apr 2020

• Ultralight DM data analysis pipeline developed

• Found many peaks above threshold

- Developing veto procedure to remove 

detector artifacts

• Statistical studies on

stochastic fluctuation
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KAGRA Collab.

arXiv:2005.05574

KAGRA DARM in 2020

https://arxiv.org/abs/1905.13650
https://arxiv.org/abs/2005.05574


Recent Progresses: DANCE
• Successfully demonstrated the operation in 2020
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Recent Progresses: DANCE
• Now working on

- Reducing excess noises

- Increasing the finesse and input laser power
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Nov. 2020 Now Target

Round-trip length 1 m 1 m 1 m

Finesse 525(19) 2.56(8)×103 2×105

Laser power 40 mW 260 mW 1 W

Shielding to reduce air turbulence



A Whole New Room (63 m2)
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B01 Team
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Summary
• Laser interferometers open up new possibilities for 

dark matter search

• Our goal: search for axion DM and gauge boson 

DM with unpreceded sensitivity

- DANCE for broad band axion

- KAGRA +polarimetry for narrow band axion

- KAGRA for gauge boson

• Analysis of KAGRA data in 2020 on going

• Prototype experiments of DANCE on going

• We expect a lot of new ideas from our 

Transformative Research Area
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Comparison with Other Groups
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Axion Search with GW Detectors
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K. Nagano, T. Fujita, YM, I. Obata
PRL 123, 111301 (2019)

https://doi.org/10.1103/PhysRevLett.123.111301


Gauge Boson 

Search
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S. Morisaki, T. Fujita, YM, 
H. Nakatsuka, I. Obata,
arXiv:2011.03589

https://arxiv.org/abs/2011.03589


• SNR grows with √Tobs if integration time is shorter than 

coherence time

• SNR grows with (Tobs)1/4 if integration time is longer

Coherence Time

35
de Broglie wavelength (coherent within this region)



Freq-Mass-Coherence Time

36

Frequency Mass Coherent Time Coherent Length

0.1 Hz 4.1e-16 eV 0.32 year 3e12 m

1 Hz 4.1e-15 eV
1e6 sec

12 days
3e11 m

10 Hz 4.1e-14 eV 1.2 days 3e10 m

100 Hz 4.1e-13 eV 2.8 hours 3e9 m

1000 Hz 4.1e-12 eV 17 minutes 3e8 m

10000 Hz 4.1e-11 eV 1.7 minutes 3e7 m


