B01

Laser interferometric searches for ultralight dark matter

Yuta Michimura

Department of Physics, University of Tokyo michimura@phys.s.u-tokyo.ac.jp

Slides are available at https://tinyurl.com/YM20210206

Ultralight Dark Matter

- Ultralight DM (<~1 eV) behaves as classical wave fields $f=2.4~{\rm Hz}\left(\frac{m_{\rm DM}}{10^{-14}~{\rm eV}}\right)$
- Laser interferometers are sensitive to tiny length changes from such oscillations

Laser Interferometry

measures differential arm length change

Laser Interferometry

• measures differential arm length change

Laser Interferometry

• measures differential arm length change

Our Strategy

 Use both table-top optical cavities and large-scale laser interferometric gravitational wave detectors

Axion and Axion-Like Particles

- Pseudo-scalar particle originally introduced to solve strong CP problem (QCD axion)
- Various axion-like particles (ALPs) predicted by string theory and supergravity
- Many experiments to search for ALPs through axion-photon coupling

Especially by using magnetic fields

Previous Searches Light Shining through Wall (ALPS etc.)

Polarization Modulation from Axions

- Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and right-handed circular polarizations
 - $c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$ coupling constant axion field
- Linear polarization will be modulated p-pol sidebands will be generated from s-pol
- Search can be done without magnetic field

Optical Cavity to Amplify the Signal

• Polarization rotation is small for short optical path

Optical Cavity to Amplify the Signal

Polarization rotation is small for short optical path

 Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections

Optical Cavity to Amplify the Signal

- Polarization rotation is small for short optical path
- Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation

Laser

DANCE Setup

Dark matter Axion search with riNg Cavity Experiment

bow-tie

 Look for amount of modulated p-pol generation in each frequency

Sensitivity of DANCE

Sensitivity better than CAST limit

* Shot noise limited 1 year observation

Sensitivity of DANCE

Sensitivity better than CAST limit

* Shot noise limited 1 year observation

Linear Cavities for Axion Search

When finite light traveling time is considered, linear cavities can also be used

- Can be sensitive when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable

Gauge Bosons

 Possible new physics beyond the standard model: New gauge symmetry and gauge boson

Proton

Neutron

Electron

Nucleus

gauge

field

- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Can be gauged without additional ingredients
 - Equals to the number of neutrons
 - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Gauge boson DM gives oscillating force

Oscillating Force from Gauge Field

Acceleration of mirrors

Force

Force

- Gauge boson mass and coupling can be measured by measuring the oscillating mirror displacement
- Almost no signal for symmetric L_x cavity if cavity length is short (phase difference is 10⁻⁵ rad @ 100 Hz for km cavity)

Search with GW Detectors

- GW Detectors are sensitive to differential arm length (DARM) change
- Most of the signal is cancelled out

Search with KAGRA KAGRA

 KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others **Gauge field** (LIGO/Virgo uses fused silica for all mirrors) Force Force Laser **B-L** charge Fused silica: 0.501 DARM Sapphire: 0.510 $L_{\rm x}$ – photodiode

Search with KAGRA KAGRA

KAGRA Gauge Boson Sensitivity

- Auxiliary length channels have better sensitivity than DARM at low mass range
- Sensitivity better than equivalence principle tests

Recent Progresses: KAGRA

- First (gravitational-wave) observing run in Feb-Apr 2020
- Ultralight DM data analysis pipeline developed
- Found many peaks above threshold
 - Developing veto procedure to remove KAGRA Collab. detector artifacts
- Statistical studies on stochastic fluctuation

Recent Progresses: DANCE

• Successfully demonstrated the operation in 2020

Recent Progresses: DANCE

- Now working on
 - Reducing excess noises
 - Increasing the finesse and input laser power

	Nov. 2020	Now	Target
Round-trip length	1 m	1 m	1 m
Finesse	525(19)	2.56(8)×10 ³	2×10 ⁵
Laser power	40 mW	260 mW	1 W

Shielding to reduce air turbulence

A Whole New Room (63 m²)

Two optical tables and a laser source for DANCE will be delivered in March

@ UTokyo Hongo Campus

B01 Team

PI: Yuta Michimura (道村唯太, UTokyo) Experiment Yuka Oshima Hiroki Fujimoto Koji Nagano

Co-I: Tomohiro Fujita (藤田智弘, ICRR) Theory & Data analysis Ippei Obata Hiromasa Nakatsuka Soichiro Morisaki Jun'ya Kume Atsushi Nishizawa

東京大学 THE UNIVERSITY OF TOKYC

MAX-PLANCK-GESELLSCHAFT

... and more to come!

Co-I: Matteo Leonardi (マテオ・レオナルディ, NAOJ) Optical characterization

ICRR Institute for Cosmic Ray Research University of Tokyo

Co-I: Shinji Miyoki (三代木伸二, ICRR) KAGRA 29

Summary

- Laser interferometers open up new possibilities for dark matter search
- Our goal: search for axion DM and gauge boson DM with unpreceded sensitivity
 - DANCE for broad band axion
 - KAGRA +polarimetry for narrow band axion
 - KAGRA for gauge boson
- Analysis of KAGRA data in 2020 on going
- Prototype experiments of DANCE on going
- We expect a lot of new ideas from our Transformative Research Area

Additional Slides

Comparison with Other Groups

Purple dotted lines from P. Arias+ JCAP 06, 013 (2012)

Axion Search with GW Detectors

K. Nagano, T. Fujita, YM, I. Obata PRL 123, 111301 (2019)

33

Gauge Boson Search

S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, arXiv:2011.03589

Coherence Time

- SNR grows with √Tobs if integration time is shorter than coherence time
- SNR grows with (Tobs)^{1/4} if integration time is longer

Freq-Mass-Coherence Time

Frequency	Mass	Coherent Time	Coherent Length
0.1 Hz	4.1e-16 eV	0.32 year	3e12 m
1 Hz	4.1e-15 eV	1e6 sec 12 days	3e11 m
10 Hz	4.1e-14 eV	1.2 days	3e10 m
100 Hz	4.1e-13 eV	2.8 hours	3e9 m
1000 Hz	4.1e-12 eV	17 minutes	3e8 m
10000 Hz	4.1e-11 eV	1.7 minutes	3e7 m