

B05: Electron-Positron Accelerator

Shohei Nishida KEK Dark Matter Symposium Feb. 6, 2021

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

Contents

- Introduction
- Belle II experiment
- Dark Matter Search at Belle II.

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

B05 Members

B05「電子陽電子加速器によるダークマター探索」 B05 "Dark Matter Search with Electron-Positron Collider"

		(and	
研究代表者 (Principal Investigator)	西田昌平(Shohei Nishida)	KEK 🌌	
研究分担者 (Co-investigator)	原康二 (Koji Hara)	KEK	
研究分担者 (Co-investigator)	角野秀一 (Hidekazu Kakuno)	首都大(TMU)	
研究分担者 (Co-investigator)	Thomas Czank	IPMU	
研究分担者 (Co-investigator)	Yun-tsung Lai	IPMU	
研究協力者 (Collaborative Researcher)	松本重貴 (Shigeki Matsumoto)		
		- CAL	

+ one new PostDoc researcher at KEK from JFY2022 (now under selection)

科研費 Dark Matter Search @Accelerator

e+e- collider

- KLOE, BaBar, Belle, Belle II
- ~ 10 GeV : sub GeV region
- Clean environment
 - \checkmark missing energy \rightarrow invisible channels.
- (ILC 250 GeV ... future)

hadron collider

- LHC (ATLAS, CMS, LHCb)
- ~ 10 TeV : WIMP search
- Also search to sub GeV region (competitive)
 - \checkmark large cross section.

Belle II Experiment

Belle and Belle II experiment:

- KEK (High Energy Accelerator Research Organization) in Tsukuba, Japan.
- Accelerator: KEKB / SuperKEKB
 - Linac + 3km ring
 - ✓ Asymmetric e⁺-e[−] collider
- "B factory experiments" (produce large amount of B mesons).

Accelerator	KEKB	SuperKEKB
Experiment (Detector)	Belle	Belle II
Operation (Year)	1999-2010	2019-
Beam Energy	3.5 GeV e⁺ + 8 GeV e⁻	4 GeV e⁺ + 7 GeV e⁻
Luminosity [cm ⁻² s ⁻¹]	2.1 × 10 ³⁴	2.4×10^{34} / 8×10^{35} (target)

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

Belle II Experiment

main target process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ ($\sigma=1.1nb$)

- "B factory".
- large amount of charm and τ are also produced.

S. Nishida (KEK) Feb. 6, 2021

Belle, Belle II

[PRL 108, 171802 (2012)]

- In 2001, Belle and BaBar
- (experiment at SLAC) discovered
- the CP Violation in B mesons.
- Verification of Kobayashi-
 - Maskawa Theory
 - ✓ Nobel Prize to Kobayashi and Maskawa (2008)

- Search for New Physics using "loop effect"
 - Virtual heavy particles (maybe non-SM) appear in a loop
- Precise measurement and comparison with the SM prediction.
 → Need very large dataset (B mesons).

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

Dark Matter Symposium

7

Belle II

- Belle II Collaboration
 - ✓ 26 countries and regions
 - ✓ ~120 institutes
 - ✓ ~1000 collaborators
- International collaboration.

- General purpose detector.
- Asymmetric beam energy → study of CP violation by measuring the decay vertex

• 2016 Feb-Jun : Phase 1

✓ SuperKEKB operation without Belle II

- 2018 Feb-Jul : Phase 2
 - ✓ Belle II without inner vertex detector.
 - ✓ Commissioning of SuperKEKB.
 - ✓ First collision.

Belle II

✓ Physics run with full Belle II detector.

B05: Electron-positron accelerator

Dark Matter Symposium

2017/4/11 Belle II roll-in

Belle II

- Luminosity $[cm^{-2} s^{-1}] = (event rate [s^{-1}]) / (cross-section [cm^{-2}])$
 - ✓ performance of accelerator (~ ability of collision). 10^{34} cm⁻² s⁻¹ = 10 nb⁻¹s⁻¹
- Integrated luminosity = Luminosity × (operation time) = Data Size
 - ✓ 1 $ab^{-1} = 1000 fb^{-1}$: total amount of Belle data in 10 year's operation
 - ✓ Belle II aims to collect 50 ab^{-1} .

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

- In 2020, SuperKEKB achieved the luminosity 2.4×10^{34} cm⁻²s⁻¹, which is higher than KEKB record (and is also world record).
- But the goal is more than 10 times higher.

ACCELERATORS | NEWS

KEK reclaims luminosity record

Record breaker The instantaneous luminosity of SuperKEKB measured at 5-minute intervals from late 2019 to 22 June 2020. Values are online measurements and contain an approximate 1% error. Credit: KEK

A new record for the highest luminosity at a particle collider has been set by SuperKEKB at the KEK laboratory in Tsukuba, Japan. On 15 June, electron–positron collisions at the 3 km-circumference double-ring collider reached an instantaneous luminosity of 2.22×10^{34} cm² s⁻¹ — surpassing the LHC's record of 2.14×10^{34} cm⁻² s⁻¹ set with proton–proton collisions in 2018. A few days later, SuperKEKB pushed the luminosity record to 2.4×10^{34} cm⁻² s⁻¹. This milestone follows more than two years of

https://cerncourier.com/a/kek-reclaims-luminosity-record/

- Belle II accumulated 90 fb⁻¹ (in 2019, 2020)
- Still 1/10 of Belle (= 1040 fb⁻¹ ~ 1 ab^{-1}) and
- 1/500 of Belle II goal (50 ab⁻¹)
- 1-3 ab⁻¹ in 4 years (?)

S. Nishida (KEK) Feb. 6, 2021

- Search for Dark Matter (DM) at Belle, Belle II.
 - ✓ CM energy is ~10GeV \rightarrow mass region up to O(1) GeV ("light DM")

Bonus

> A', Z' may explain the discrepancy of $(g-2)_{\mu}$ between theory and experiment.

- Typical process
 - ✓ $e^+ + e^- \rightarrow SM$ -particles + Mediator
 - ✓ B (or other hadron) \rightarrow SM-particles + Mediator

Invisible Mode

$e^+e^- \rightarrow \gamma$ + invisible

- Final state: a single photon only.
- Bump in a recoil mass or photon energy.
- Need special "single photon trigger" to collect such events.
- Not many previous measurements
 → possible with initial Belle II data.

Dark Photon A', SIMP (Strongly Interacting Massive Particle)...

[Y. Hochberg, E. Kuflik, H. Murayama JHEP05 (2016) 090] 10^{-1} ILC (contact) 10^{-2} EWPO (II APEX 10 3 monophoton (ILC) ∿ 10 € Belle-11 (i 41° 10^{-5} $SU(2), N_f = 2$ 10^{-6} $\alpha_D = 1/4\pi$ 10^{-7} $m_{\pi} = 300 \text{ MeV}$ 10^{-8} 10^{-1} 10^{1} 10^{2} 10^{3} 1

Wide discovery space around 0.5 – 50 GeV can be explored by Belle II (<10GeV)

 m_V

GeV

Invisible Mode

BaBar experiment (53 fb⁻¹) [PRL 119 131804 (2017)]

- ✓ Single photon trigger is available for 53 out of 550 fb⁻¹
- Belle didn't have a single photon trigger.
- Better limit is expected at Belle II with 20 fb⁻¹ (due to detector configuration).
- Need good understanding of the detector.

S. Nishida (KEK) Feb. 6, 2021

Leptonic Mode

If m(A') < 2m(χ), A' decays to SM particles. • e.g. $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow l^+l^-$ ($l = e, \mu, \tau$)

- Best limit in 0.1 10 GeV by BaBar [PRL 113, 201801 (2014)]
- Some analyses are going on at Belle II, but need more data.
 - ✓ Best sensitivity by Belle II within a few years.
- Competition with LHCb.

S. Nishida (KEK) Feb. 6, 2021

- Gauging $L_{\mu} L_{\tau}$, difference of the μ and τ lepton number, allows additional neutral Z' b0son.
- Can solve deviation of $(g-2)_{\mu}$, and other anomalies seen in flavor physics $(B \rightarrow K^{(*)}\mu\mu)$.
- Production with the final state radiation from a muon.

Z' may decay to

- Invisibly: $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow \chi \chi$
- SM particles: $e^+e^- \rightarrow \mu^+\mu^-Z', Z' \rightarrow \mu^+\mu^-$

event display (simulation) for $e^+e^- \rightarrow \mu^+\mu^-Z'$, $Z' \rightarrow \chi\chi$

S. Nishida (KEK) Feb. 6, 2021 B05: Electron-positron accelerator may decay to 16

 $Z' \rightarrow invisible$

$Z' \rightarrow$ invisible : First physics result from Belle II !!

- 0.276 fb⁻¹ data from Belle II Phase II run.
 - Phase II: commissioning run in 2018 taken without inner vertex detector.
- e⁺e⁻ → μ⁺μ⁻ + missing energy and search for a bump in recoil mass.

[PRL124 (2020), 141801]

 $e^+e^- \rightarrow \mu^+\mu^- Z', \ Z' \rightarrow \chi \chi$

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

 $Z' \rightarrow \mu^+ \mu^-$

$Z'\!\!\rightarrow \mu^{\!+}\mu^{\!-}$

- 4 lepton final states
- Past search by BaBar

- g-2 favored region is almost excluded by BaBar.
- Analysis with Belle full data set is going on by Thomas Czank. Result will appear soon!

S. Nishida (KEK) Feb. 6, 2021

刑費 Dark Matter Search at Belle II

I		
Target	Process	Mass Range (GeV)
SIMP / Dark Photon (A')	$e^+e^- \to A'\gamma, A' \to \text{invisible}$	$m_{A'} < 10$
SIMP / Dark Photon (A')	$e^+e^- \to A'\gamma, A' \to \ell^+\ell^-, h^+h^-$	$0.1 < m_{A'} < 10$
Dark gauge boson (Z')	$e^+e^- \rightarrow Z'\mu^+\mu^-, Z' \rightarrow \mu^+\mu^-$	$0.2 < m_{Z'} < 10$
Dark gauge boson (Z')	$e^+e^- \to Z'\mu^+\mu^-, Z' \to \text{invisible}$	$m_{Z'} < 10$
Axion (a)	$e^+e^- \to \gamma a, a \to \gamma \gamma$	$m_a < 10$
A' and Dark Higgs (h')	$e^+e^- \to A'h', A' \to \ell\ell, h' \to \text{invisible}$	$m_{A'} + m_{h'} < 10$
Dark Scaler (S)	$B \to KS, S \to \gamma\gamma$	$m_a < 10$
Light WIMP (ϕ)	$B \to K \phi (\phi \ \text{it long-lived})$	$m_a < 3$
Dark Photon (A')	$D^{*0} \rightarrow D^0 A', A' \rightarrow e^+ e^-$	$0.01 < m_{A'} < 0.1$
Dark Photon (A')	$\Upsilon(2S,3S) \to \Upsilon(1S)\pi^+\pi^-,$	
	$\Upsilon(1S) \to A'\gamma, A' \to \text{invisible}$	$m_{A'} < 10$

- Production at e⁺e⁻ collision.
- Decay of B, D*, Υ mesons, which are largely produced at Belle II.
- Displaced vertex (long lived particles)

- Many search processes.
- Close discussion with theorists.

S. Nishida (KEK) Feb. 6, 2021

B05: Electron-positron accelerator

Summary

- Belle II experiment started in 2019 is running.
- So far, (only) 90 fb⁻¹ of data is accumulated
 - ✓ Nevertheless, Belle II already got physics results for Dark Matter Search.
- Within a few years, Belle II will have the largest data sample.
 - ✓ High sensitivity to MeV-GeV scale DM in many models.
- Broad programs to search for DM.

