Dark Matter Symposium February 6, 2021

Group C02: Cosmic structure formation

Shin'ichiro Ando

University of Amsterdam / University of Tokyo

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

GRavitation AstroParticle Physics Amsterdam

Cold Dark Matter (CDM) is well established and has all the observational support

Cold Dark Matter (CDM) is well established and has all the observational support

at large scales*

* Scales larger than galaxies

Uman ocalo otraotare

- Cusps in density profiles
- Very many small (sub)structures

axions, PBHs

Sterile neutrinos

Cutoff at
sub-galaxy
scale in the
power
spectrum

Cores in density profiles induced by self scattering

Ultralight bosons

Pattern
induced by
de Broglie
length at
sub-galactic
scales

rk atoms

oman obaio otraotari

Scientific goals: develop models of small-scale structure formation, and apply them to various dark matter candidates

- What dark matter particles are determines small-scale distribution
 - Key to identifying particle nature
- Develop both numerical simulations and semianalytic models, calibrate them, and establish reliable models free from shot noise and numerical resolution

 WIMPs: Halo masses range 20 (!) orders of magnitude from Earth to clusters of galaxies

- WIMPs: Halo masses range 20 (!) orders of magnitude from Earth to clusters of galaxies
- Numerical simulations can resolve down to $~\sim 10^5 M_{\odot}$ and observationally much larger

- WIMPs: Halo masses range 20 (!) orders of magnitude from Earth to clusters of galaxies
- Numerical simulations can resolve down to $~\sim 10^5 M_{\odot}$ and observationally much larger
- Lots of resources have been spent to understand baryonic effect rather than increasing this resolution over the last decade

- WIMPs: Halo masses range 20 (!) orders of magnitude from Earth to clusters of galaxies
- Numerical simulations can resolve down to $~\sim 10^5 M_{\odot}$ and observationally much larger
- Lots of resources have been spent to understand baryonic effect rather than increasing this resolution over the last decade
- WIMP annihilation is sensitive to halos of all scales

Annihilation boost

$L(M) = [1 + B_{\rm sh}(M)]L_{\rm host}(M)$

$B_{\rm sh}(M) = \frac{1}{L_{\rm host}(M)} \int dm \frac{dN}{dm} L_{\rm sh}(m) [1 + B_{\rm ssh}(m)]$

http://wwwmpa.mpa-garching.mpg.de/aquarius/

Annihilation boost

Gao et al., Mon. Not. R. Astron. Soc. 419, 1721 (2012)

Moliné et al., Mon. Not. R. Astron. Soc. 466, 4974 (2017)

- Very uncertain, of which we don't even have good sense
- No way that it can be solved with numerical simulations

Semi-analytic models of subhalos

- Complementary to numerical simulations
- Light, flexible, and versatile
- Can cover large range for halo masses (micro-halos to clusters) and redshifts (z ~ 10 to 0) based on physics modeling
- Accuracy: Reliable if it is calibrated with simulations at resolved scales

Semi-analytic modeling

Subhalo accretion

Infall distribution of subhalos:

Yang et al., Astrophys. J. 741, 13, (2011)

Extended Press-Schechter formalism

$$\frac{d^2 N_{\rm sh}}{dm_{\rm acc} dz_{\rm acc}} \propto \frac{1}{\sqrt{2\pi}} \frac{\delta(z_{\rm acc}) - \delta_M}{(\sigma^2(m_{\rm acc}) - \sigma_M^2)^{3/2}} \exp\left[-\frac{(\delta(z_{\rm acc}) - \delta_M)^2}{2(\sigma^2(m_{\rm acc}) - \sigma_M^2)}\right]$$

Subhalo evolution

- Monte Carlo approach
 - Determine orbital energy and angular momentum
 - Assume the subhalo loses all the masses outside of its tidal radius instantaneously at its peri-center passage
- Internal structure changes follow Penarrubia et al. (2010)

Semi-analytic modeling

Subhalo mass function: Clusters and galaxies

Subhalo mass function: Galaxies at z=2,4

Subhalo mass function: Dwarfs at z=5

Distribution of r_s and ρ_s

$$\rho(r) = \frac{\rho_s}{(r/r_s)(r/r_s + 1)^2}$$

Ando et al., *Phys. Rev. D* **102**, 061302 (2020)

Good agreement with simulation results (Vea Lactea II)

Annihilation boost

Hiroshima, Ando, Ishiyama, *Phys. Rev. D* **97**, 123002 (2018) Ando, Ishiyama, Hiroshima, *Galaxies* **7**, 68 (2019)

w/ up to sub³-subhalos

- Boost can be as large as ~1 (3) for galaxies (clusters)
- Boost factors are higher at larger redshifts, but saturates after z = 1
- For one combination of host mass and redshifts (*M*, *z*), the code takes only
 ~O(1) min to calculate the boost on a laptop computer

Estimates of dwarf density profiles

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker, *Phys. Rev. D* **102**, 061302 (2020)

- Black: Likelihood contours
- Green: log [J/(GeV²/cm⁵)]
- Red: Prior density
- Blue: Posterior density

- Having small data only does not break the degeneracy between r_s and ρ_s
- Cosmological arguments have been adopted to chop off upper regions of the parameter space (e.g., Geringer-Sameth et al. 2015)
- Satellite prior does this job naturally as well as breaks the degeneracy
- This is hard to achieve with simulations as they are limited by statistics of finding dwarf candidates

Cross section constraints

- Adopting satellite priors weaken the cross section constraints by a factor of 2-7
- The effect is relatively insensitive to condition of satellite formation: robust prediction
- Thermal cross section can be excluded only up to 20-50 GeV
- Also very relevant for wino dark matter targeted by CTA

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker, Phys. Rev. D 102, 061302 (2020)

Benchmark models for CDM / WIMP

- Benchmark models for CDM / WIMP
 - Free from resolution (useful for small mass ranges)

- Benchmark models for CDM / WIMP
 - Free from resolution (useful for small mass ranges)
 - Free from shot noise (useful for large mass ranges)

- Benchmark models for CDM / WIMP
 - Free from resolution (useful for small mass ranges)
 - Free from shot noise (useful for large mass ranges)
 - Well tested against numerical simulations of halos with various masses at various redshifts

- Benchmark models for CDM / WIMP
 - Free from resolution (useful for small mass ranges)
 - Free from shot noise (useful for large mass ranges)
 - Well tested against numerical simulations of halos with various masses at various redshifts
 - Quick implementation, which is crucial to survey through parameter spaces for different dark matter models

Application to WDM

Lovell et al. Mon. Not. R. Astron. Soc. 439, 300 (2014)

Change $\delta_c(z)$ and $\sigma(M)$ with those for WDM; others unchanged

w/ Ariane Dekker, Camila Correa, Kenny Ng

C02: Team members

Shin'ichiro Ando

Masato Shirasaki

Atsushi Taruya

Neal Dalal

Takahiro Nishimichi

Takashi Okamoto

Simulations

+ 2 postdoctoral researchers

Calibration of halo mass functions

z=6Shirasaki, Ishiyama, Ando, in preparation $M \,\mathrm{d}n/\mathrm{d}\log M \,[10^9 \,h^2 \,M_\odot \,\mathrm{Mpc}^{-3}]$ This study Sheth & Tormen (2002)For set out a better (CDM) baseline for 6 Tinker et al. (2008)constraining other dark matter models Bhattacharya et al. (2011)5 Despali et al. (2016) 10^{1} Press & Schechter (1974) 3 $\log(1/\sigma)$ $\left(\right)$ Tinker et al. (2008)Mass range in simulation Bhattacharya et al. (2011)0.30 Watson et al. (2013)0.15 Frac. Diff Despali et al. (2016)0.00 This study -0.152 10 Redshift z-0.30 10^{9} 10^{11} 10^{13} 10^{15} 10^{7} 117 high-res simulations from nu2gc collaborations $M \left[h^{-1} M_{\odot} \right]$ (https://hpc.imit.chiba-u.jp/~nngc/index.html)

+ lensing constraints on, e.g., WDM (Dalal)

Phase-space distribution

Understanding the phase-space structure of subhalos and dependence on dark matter models using simulations + machine learning (Nishimichi)

Prospects

- Small scale distribution of dark matter is essential in discriminating different particle dark matter candidates
- C02 will also provide important information for researches carried out by the other groups
- We base our theoretical studies on benchmark models for CDM/WIMP; there still are many tasks to make the models more accurate
- Simulations will incorporate various dark matter candidates as well as baryonic physics
- We are looking forward to hearing many unique ideas on structure formation through open-solicited programs