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Cold Dark Matter (CDM) is
well established and has all
the observational support



Cold Dark Matter (CDM) is
well established and has all
the observational support

at large scales™

* Scales larger than galaxies



Small scale structure
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Small scale structure

Scientific goals: develop models of small-scale structure
formation, and apply them to various dark matter candidates

* What dark matter particles
are determines small-scale
distribution

e Key to identifying particle
nature

 Develop both numerical
simulations and semi-
analytic models, calibrate
them, and establish reliable
models free from shot noise
and numerical resolution
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My personal take - where this started

e WIMPs: Halo masses range 20 (!) orders of magnitude
from Earth to clusters of galaxies

e Numerical simulations can resolve down to ~ IOSMQ
and observationally much larger

e | ots of resources have been spent to understand
baryonic effect rather than increasing this resolution over
the last decade

e WIMP annihilation is sensitive to halos of all scales

Bartels, Ando, Phys. Rev. D 92, 123508 (2015)
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S(R) [photons cm™? s™" sr]

Gao et al., Mon. Not. R. Astron. Soc. 419, 1721 (2012)

Annihilation boost
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Moliné et al., Mon. Not. R. Astron. Soc. 466, 4974 (2017)

* \ery uncertain, of which we don’t even
have good sense

* No way that it can be solved with
numerical simulations



Semi-analytic models of subhalos

e Complementary to numerical simulations

e Light, flexible, and versatile

e (Can cover large range for halo masses (micro-halos to
clusters) and redshifts (z ~ 10 to 0) based on physics

modeling

* Accuracy: Reliable if it is calibrated with simulations at
resolved scales



Semi-analytic modeling

Initial condition:
Primordial power spectrum

' Smaller halos merge and accrete | Extended Press-Schechter
| to form larger ones } formalism

Modeling for tidal stripping
and mass-loss rate

' Subhalos experience mass loss |



Subhalo accretion
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rh/Mhost [Gyr_l]

m/Mhost [Gyr_l]

Subhalo evolution

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)
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* Determine orbital energy and angular momentum

* Assume the subhalo loses all the masses outside of
its tidal radius instantaneously at its peri-center

passage

* Internal structure changes follow Penarrubia et al. (2010)



Semi-analytic modeling

¥ Initial condition:
Primordial power spectrum

formalism

¥
)

Modeling for tidal stripping
and mass-loss rate



Subhalo mass function:
Clusters and galaxies
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Subhalo mass function:
Galaxies at z=2,4
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Subhalo mass function:

mZdNSh/dm [Mo ]

Dwarfs at z=5
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Distribution of rs and ps

Ps
(rl/ry)(rlr, + 1)

p(r) =
Ando et al., Phys. Rev. D 102, 061302 (2020)
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Annihilation boost

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018) 5t
Ando, Ishiyama, Hiroshima, Galaxies 7, 68 (2019)
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 For one combination of host mass and
redshifts (M, z), the code takes only
~0(1) min to calculate the boost on a
laptop computer
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Estimates of dwarf density profiles

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker,
Phys. Rev. D 102, 061302 (2020)
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Cross section constraints
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Summary: Semi-analytic modeling

e Benchmark models for CDM / WIMP
* Free from resolution (useful for small mass ranges)
* Free from shot noise (useful for large mass ranges)

 Well tested against numerical simulations of halos with
various masses at various redshifts

* Quick implementation, which is crucial to survey
through parameter spaces for different dark matter
models



Application to WDM

Lovell et al. Mon. Not. R. Astron. Soc. 439, 300 (2014)
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02: Team members

aste——

Neal DaIaI Takahiro Nishimichi Takashl Okamoto

Simulations + 2 postdoctoral researchers



Calibration of halo mass functions
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Phase-space distribution
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Understanding the phase-space structure of subhalos and
dependence on dark matter models using simulations +
machine learning (Nishimichi)



Prospects

Small scale distribution of dark matter is essential in
discriminating different particle dark matter candidates

CO02 will also provide important information for researches
carried out by the other groups

We base our theoretical studies on benchmark models for
CDM/WIMP; there still are many tasks to make the models
more accurate

Simulations will incorporate various dark matter candidates as
well as baryonic physics

We are looking forward to hearing many unique ideas on
structure formation through open-solicited programs



