What is dark matter? Comprehensive study of the huge discovery space in dark matter PI: Hitoshi Murayama (Kavli IPMU, Berkeley) February 6, 2021

ダークマターの正体は何か?

広大なディスカバリースペースの網羅的研究 領域代表:村山斉(東大 Kavli IPMU、Berkeley) 2020年10月6日

既存設備を本来の目的とは異なる形で有効活用し、世界をリード

重カレンス

銀河回

遠くの銀河

光を曲げる

5

地球

重力の修正では 説明できない ダークマターは 確実にあるが 原子ではない 幽霊のような物質

Credit: J. Wise, M. Bradac (Stanford/KIPAC)

観測される高温のガス

ピンクはX線で

観測されるダークマター

青は重力レンズで

私たちの生みの母

Jim Peebles 2019年ノーベル物理学賞 構造形成理論

ダークマターなし

クマターあり

確かにお母さん!

ダークマター

- 世界競争力のある新しい設備は >100億円規模
- 日本の素晴らしい既存設備を新しい形で活用
 - 本来の目的とは全く異なる有効利用
 - B01: KAGRA(東大)ブラックホールの合体
 - B02, B03: すばる望遠鏡(国立天文台)銀河進化
 - B04:XRISM (JAXA) 超新星残骸
 - B05: Belle II (KEK) CPの破れ
 - B06: Simons Array (KEK, IPMUなどを含む国際共同研究) インフレーションの検証

[X00] 総括班 村山 (KIPMU)	[A01]軽いDM 高橋 (東北大)	[A02]重いDM 村瀬 (PSU)	[A03]マクロDM 柳(名古屋大)	
[B01] レーザー干渉計 道村 (東大)	axion, dilaton (円偏光)	背景重力波 (相転移など)	背景重力波 (inflationなど)	[C0
[B02] すばる分光 高田 (KIPMU)	fuzzy DM, SIDM 3D DM 地図	矮小銀河内の対消滅 3D DM 地図	PBH, UCMH, DM subhalo, 3D DM 地 図	2]宇宙構:
[B03] イメージング 宮崎 (NAOJ)	DM subhalo DM地図	DM subhalo DM 地図	PBH, UCMH (重カマイクロレンズ)	造形成理
[B04] X線 山崎(典) (ISAS)	sterile neutrino moduli (輝線、連続光)	ダークマター崩壊 (輝線、連続光)	PBH蒸発 (X線背景放射)	論 安藤
[B05] <i>e⁺e⁻</i> 加速器 西田(KEK)	dark photon SIMP	高エネルギーの間接検証 (余剰次元、Higgs)	高エネルギーの間接検証 (余剰次元、Higgs)	(アムステリ
[B06] CMB 小松(MPA)	axion (CMB 偏光)	宇宙初期の対消滅 N _{eff}	PBH ($ au$)	レダム大)
	[C01]	量子重力理論 山崎(雅)(KIPMU)	

KAY LI IPMU			
総括班	村山斉	東大カブリIPMU / UC Berkeley	素粒子論・宇宙論
A01	高橋史宜	東北大学	素粒子論
A02	村瀬孔大	Penn State / 京大	宇宙物理
A03	柳哲文	名古屋大	相対論・宇宙論
B01	道村唯太	東大理学系物理	実験物理
B02	高田昌広	東大カブリIPMU	宇宙論・宇宙物理
B03	宮崎聡	国立天文台	観測的宇宙論
B04	山崎典子	宇宙科学研	実験物理
B05	西田昌平	KEK	素粒子実験
B06	小松英一郎	Max Planck / 東大カブリIPMU	宇宙論
C01	山崎雅人	東大カブリIPMU	超弦理論
C02	安藤真一郎	Amsterdam / 東大カブリIPMU	素粒子的宇宙論

総括批	村山斉	東大カフリIPMU / UC Berkeley	素粒子論・于由論
A01	高橋史宜	東北大学	素粒子論
A02	村瀬孔大	Penn State / 京大	宇宙物理
A03	柳哲文	名古屋大	相対論・宇宙論
B01	道村唯太	東大理学系物理	実験物理
B02	高田昌広	東大カブリIPMU	宇宙論・宇宙物理
B03	宮崎聡	国立天文台	観測的宇宙論
B04	山崎典子	宇宙科学研	実験物理
B05	西田昌平	KEK	素粒子実験
B06	小松英一郎	Max Planck / 東大カブリIPMU	宇宙論
C01	山崎雅人	東大カブリIPMU	超弦理論
C02	安藤真一郎	Amsterdam / 東大カブリIPMU	素粒子的宇宙論

総括班	村山斉	米芸術科学アカデミー、独フンボルト研究賞、IPMU初代機構長
A01	高橋史宜	素粒子メダル奨励賞
A02	村瀬孔大	西宮湯川記念賞
A03	柳哲文	原始ブラックホール形成理論第一人者
B01	道村唯太	日本物理学会若手奨励賞
B02	高田昌広	すばる国際研究チーム サイエンスワーキングループ長
B03	宮崎聡	日本天文学会林忠四郎賞、文部科学大臣表彰科学技術賞
B04	山崎典子	XRISM衛星の中心的研究者
B05	西田昌平	Belle国際実験グループ物理コーディネータ
B06	小松英一郎	日本天文学会林忠四郎賞、西宮湯川記念賞、Breakthrough Prize
C01	山崎雅人	素粒子メダル奨励賞
C02	安藤真一郎	オランダ科学研究機構Vidi賞
		でです。 していたい しん

BOI班: レーザー干渉計理 大型のレーザー干渉計型重力波望遠鏡KAGRAに偏光板を テーブルトップサイズの光リング共振器

B02班:すばるPFSで探るダークマター

B04班:X線領域の観測技術の革新によるダークマター探索

XRISM 2022年打ち上げ予定 分光分解能は既存のCCDの20倍、宇宙のX線による観測技術に革新 keV質量範囲のダークマターの崩壊輝線を直接捉える この革新的「マイクロカロリメータ」により、太陽アクシオン直接探査。 太陽アクシオンに特徴的な14keVのX線を探索

B05班:電子陽電子加速器によるダークマター探索

e+e-→γ+見えないもの

- ・終状態は光子1つだけ。
- 「単光子トリガー」が必要

SuperKEKB

加速器

- → 本研究で開発・実装
- ・過去の測定は少ない
 → 本研究で解析

共有設備

目指すサイエンス:銀河内スケールの構造形成を記述する モデルを構築し、さまざまなダークマター候補に適用

数値シミュレーションによる、様々なダークマター候補 の場合における小スケール密度分布

マタ

Jim Peebles 2019年ノーベル物理学賞 構造形成理論

- ダークマター粒子の性質に よって、銀河内スケールに おける分布はかなり違う
- ダークマターの正体同定
 への鍵となりうる

本領域で期待される成果

アプローチ	施設	サイエンス	新しいデータ
レーザー干渉計	KAGRA	アクシオン	グループの承認次第
レーザー干渉計	テーブルトップ	アクシオン	期間内
レーザー干渉計	KAGRA	<i>B</i> – <i>L</i> ゲージボソン	期間内
分光観測	すばる	自己相互作用	期間内
分光観測	すばる	ファジーダークマター	期間内
分光観測	すばる	矮小銀河中の DM 対消滅	期間内
イメージング	すばる	DM 3次元地図	期間内
イメージング	すばる	矮小銀河の個数,空間分布	期間内
イメージング	すばる	原始ブラックホール	期間内
X 線観測	XRISM	ステライルニュートリノ	期間内
X 線観測	XRISM	弦理論モデュライ	期間内
X 線観測	テーブルトップ	アクシオン	期間内
<i>e</i> + <i>e</i> -加速器	SuperKEKB	ダークフォトン	期間内
<i>e</i> + <i>e</i> -加速器	SuperKEKB	SIMP	期間内
e ⁺ e ⁻ 加速器	ILC	余剰次元	将来計画
CMB	ACT/SPT/SA	アクシオン	期間内
CMB	ACT/SPT/SA	晴れ上がり時期の対消滅	期間内

- 公募研究への期待:
- 新しい分野、アイディアが必要
 - 今までに考えられなかったダークマターの理論

公募研

ューヨーク国連本部

- 今までなかった実験、観測の手法
- 天文学、量子光学、量子デバイス、素粒子物理、 重力など、分野を横断する研究を奨励

今までにない分野を横断するコミュニティ

更にアウトリーチで日本社会・世界に還元

日本の地方大学から世界の一流研究機関まで

ディスカバリースペースにアタック

日本発で世界のダークマター研究を変革

既存分野の壁を破る<mark>横断的研究</mark>

既存設備を本来の目的とは異なる形で**有効活用し、世界をリード**