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Intro: Kronecker coefficients

Many quantities in symmetric group representation theory are
combinatorially constructible.

E.g. dimensions of irreps (standard tableaux) ;

Little-wood Richardson coefficients : counting labelled skew
Young tableaux according to some labelling rules
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The multiplicities are properties of representations defined over
C, but they can be calculated by the LR rule – just using
I integers
I discrete objects (partially labelled Young diagrams)
I and counting.

The Littlewood-Richardson coefficients are multiplicities of
reduction of irreps of Sm+n into irreps of Sm × Sn.

They also give the multiplicities of tensor product
decompositions of U(N) tensor products R ⊗ S → T . The
relation between these two interpretations is given by
Schur-Weyl duality.



Characters of Sn also have a combinatoric construction by the
Murnaghan-Nakayama Lemma

χR
ρ =

∑
T∈BST (R;ρ)

(−1)ht(T )

Count labellings of young diagram R; labelling rules depend on
ρ ; height function for each T .

From this construction, it is clear that these characters are
integers.



The Kronecker coefficient for a triple of Young diagrams with n
boxes is the number of times the one-dimensional (trivial) irrep
of Sn appears in

V (Sn)
R1
⊗ V (Sn)

R2
⊗ V (Sn)

R3

Equivalently the number of times V (Sn)
R3

appears in the

decomposition of V (Sn)
R1
⊗ V (Sn)

R2
.
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For Kronecker coefficients, we know from rep theory
interpretation that they are non-negative. But there is no
manifestly positive construction ( such as LR) or formula :

C(R1,R2,R3) =
1
n!

∑
σ∈Sn

χR1(σ)χR2(σ)χR3(σ)

Is there a manifestly positive construction ?
Discussed in Stanley (1999) - positivity problems and conjectures , also recent papers in connection with
computational complexity, e.g. Pak and Panova, “On the complexity of computing Kronecker coefficients,” Comp.
Complexity 2017.



Intro: Algebras K(n)

We will be approaching this problem using a family of algebras
K(n), one for every positive integer n

These algebras K(n) have a lot of information about tensor
model observables, their counting, associated large N phase
transitions, and correlators of tensor model observables –
which are of interest in the context of holography for tensor
models.

The rapid growth of the dimension of K(n) as a function of n
implies a vanishing large N Hagedorn temperature ( Beccaria,
Tseytlin, 2017).

Here we focus on a mathematical application of K(n).



K(n) is a sub-algebra of C(Sn)⊗ C(Sn).

C(Sn) is a vector space of dimension n! spanned by
permutations σ ∈ Sn. For two elements

a =
∑
σ∈Sn

aσσ

b =
∑
τ∈Sn

bττ

ab =
∑
στ

aσbτ (στ)

K(n) has a nice combinatoric basis related to tensor invariants
of U(N) in the large N limit



Intro: A basis for tensor invariants

Consider Φijk is a 3-index tensor variable. Φ̄ijk is the conjugate

Transform as VN ⊗ VN ⊗ VN of U(N)× U(N)× U(N). And
V̄N ⊗ V̄N ⊗ V̄N .

In “tensor models” (generalizations of random matrix theories)
we are interested in polynomial functions Φ, Φ̄ which are
invariant under U(N)× U(N)× U(N).
Ben Geloun, Ramgoolam, “Counting Tensor Model Observables and Branched Covers of the 2-Sphere,” AIHPD
2014

Also from quantum information theory motivations
“Stable Hilbert series as related to the measurement of quantum entanglement,” MW Hero, JF Willenbring, Discrete
Maths 2009.



The tensor product VN ⊗ V̄N decomposes as the adjoint of
dimension N2 − 1 and the invariant.
The invariant, where {ei , ēj} are the standard bases for U(N)
fundamental/anti-fundamental reps∑

i

ei ⊗ ēi =
∑
i,j

δi
j e

j ⊗ ēi

States in V⊗n ⊗ V̄⊗n (for n ≤ N ), invariant under the diagonal
U(N) action, span a space of dimension n! (follows from
Schur-Weyl duality) and a basis of invariants is given by

Oσ =
∑

i1,i2,···in

∑
j1,··· ,jn

δi1
jσ(1)
· · · δin

jσ(n)
ej1 ⊗ · · · ⊗ ejn ⊗ ēi1 ⊗ · · · ⊗ ēin

=
∑

j1,··· ,jn

ej1 ⊗ · · · ⊗ ejn ⊗ ējσ(1) ⊗ ējσ(2) ⊗ · · · ējσ(n)



Schur-Weyl duality :

V⊗n
N =

⊕
R`n;l(R)≤N

V U(N)
R ⊗ V Sn

R

Considering U(N) invariants in

V⊗n
N ⊗ V̄⊗n

N =
⊕

R`n;l(R)≤N

V U(N)
R ⊗ V Sn

R ⊗
⊕

S`n;l(S)≤N

V U(N)
S ⊗ V Sn

S

For large N ∑
R`n

d2
R = n!

For finite N ∑
R`n;l(R)≤N

d2
R
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Invariant polynomials of degree n in Φijk , Φ̄ijk correspond to
U(N) invariants in

Symn(VN ⊗ VN ⊗ VN)⊗ Symn(V̄N ⊗ V̄N ⊗ V̄N)

Invariant polynomials can be labelled by a triple of permutations

Oσ1,σ2,σ3(Φ, Φ̄) =
Φi1j1k1 · · ·Φin jnkn Φ̄iσ1(1)

jσ2(1)
kσ3(1)

· · · Φ̄iσ1(n)
jσ2(n)

kσ3(n)

01 November 2018 10:25

   New Section 141 Page 1    



There are equivalences

Oσ1,σ2,σ3 = Oγ1σ1γ2,γ1σ2γ2,γ1σ3γ2

for γ1, γ2 ∈ Sn.

These equivalence classes form a double coset.

Diag(Sn) \ (Sn × Sn × Sn)/Diag(Sn)

Points are in 1-1 correspondence with 3-edge-colored graphs
with n black and n white vertices, with lines joining black to
white. Each vertex is trivalent and has one incident edge of
each color.

The space of functions on the double coset forms an algebra
K(n) – we will give more concrete ways of thinking about this
algebra shortly.



Intro: Dimension of K(n)

The number of these equivalence classes can be counted
using Burnside’s Lemma

N (n) =
1

n!2

∑
γ1,γ2

Number of fixed points

=
1

n!2

∑
γ1,γ2

∑
σ1,σ2,σ3

δ(γ1σ1γ2σ
−1
1 )δ(γ1σ2γ2σ

−1
2 )δ(γ1σ3γ2σ

−1
3 )

Simplifying this leads to

N (n) =
∑
p`n

Sym p

For a partition p consisting of pi parts of length i

Symp =
∏

i

ipi pi !



Intro: Dimension of K(n)
Using the expansion of δ(σ) in terms of irreducible characters of
Sn

δ(σ) =
1
n!

∑
σ∈Sn

dRχ
R(σ)

we arrive at

N (n) =
∑

R1,R2,R3`n

C(R1,R2,R3)2

There is another ribbon-graph-combinatoric interpretation,
related by a “gauge-fixing” of the above
permutation-triples/3-colored-graph description



Intro: Colored graphs to bipartite ribbon graphs

(σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ2, γ1σ3γ2)

All perms in Sn. These equivalence classes define the double
coset

Take γ2 = σ−1
3 :

(σ1, σ2, σ3) ∼ (σ1σ
−1
3 , σ2σ

−1
3 ,1) ≡ (τ1, τ2,1)

Apply γ1, then γ2 = σ−1
3 γ−1

1 to get

(σ1, σ2, σ3) ∼ (γ1σ1, γ1σ2, γ1σ3) ∼ (γ1σ1σ
−1
3 γ−1

1 , γ1σ2σ
−1
3 γ−1

1 ,1)

≡ (γ1τ1γ
−1
1 , γ1τ2γ

−1
1 ,1)

τ1 = σ1σ
−1
3 , τ2 = σ2σ

−1
3



Equivalence classes in Sn × Sn : Bipartite ribbon graphs

The counting of 3-colored graphs is equivalent to counting
equivalence classes of pairs in Sn, generated by the diagonal
conjugation:

(τ1, τ2) ∼ (γτ1γ
−1, γτ2γ

−1)

These describe bi-partite ribbon graphs embedded on a
surface.
A bipartite ribbon graph, also called a hypermap, is a graph embedded on a two-dimensional surface with black and
white vertices, such that edges connect black to white vertices and cutting the surface along the edges leaves a
disjoint union of regions homeomorphic to open discs. Bipartite ribbon graphs, denoted ribbon graphs for short in
this paper, with n edges can be described using permutations of {1, 2, · · · , n} forming the symmetric group Sn .

See for example : Graphs on surfaces and their applications, Lando and Zvonkin.

N (n) is the number of bipartite graphs with n edges.



Permutation pairs and bi-partite ribbon graphs
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Figure: Bipartite ribbon graphs with n = 3 edges
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Tensor observables and Matrix Feynman graphs
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Intro : K(n)
K(n) is the subspace of C(Sn)⊗ C(Sn) which is invariant under

γ :
∑
τ1,τ2

λτ1,τ2τ1 ⊗ τ2 →
∑
τ1,τ2

λτ1,τ2γτ1γ
−1 ⊗ γτ2γ

−1

The dimension of this subspace is the same as the N (n), which
is the number of equivalence classes of pairs in
(τ1, τ2) ∈ Sn × Sn under the equivalence
(τ1, τ2) ∼ (γτ1γ

−1, γτ2γ
−1).



Intro: K(n) and ribbon graph basis.

Let r be an index rrunning over distinct equivalence classes or
permutation pairs : (τ

(r)
1 , τ

(r)
2 ) are representatives of the

classes.

For each equivalence class

Er =
1
n!

∑
γ∈Sn

µτ
(r)
1 γ−1 ⊗ µτ (r)2 γ−1

=
1

|Orb(r)|
∑

a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)2 (a)

obeys (γ ⊗ γ)Er (γ−1 ⊗ γ−1) = Er and hence Er ∈ K(n).

There is one ( and only one ) element in K(n) for every orbit,
i.e. every ribbon graph.
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Use the product in C(Sn)⊗ C(Sn) to multiply these. The
outcome is within the subspace.

K(n) is a sub-algebra.

The Er form the geometric basis of K(n).



Intro: K(n)

Dim(K(n)) = |Rib(n)| =
∑
p`n

|Sym(p)| =
∑

R1,R2,R3`n

C(R1,R2,R3)2

Bengeloun, Ramgoolam , “Tensor models, Kronecker coefficients and permutation centralizer algebras,” JHEP2017

The dimension of K(n) is the number of ribbon graphs which is
also the sum of squares of Kronecker coefficients. This sum of
squares thus has a combinatoric construction.
J. Bengeloun and S. Ramgoolam, “Quantum mechanics of bipartite ribbon graphs: Integrality, Lattices and

Kronecker coefficients” arXiv:2010.04054v1 [hep-th]

Can we use K(n) to give a combinatoric construction for
C(R1,R2,R3)2 and C(R2,R2,R3) ?



Intro: A Fourier basis of K(n)
We used the Wedderburn-Artin decomposition of K(n) into
matrix blocks, which can be viewed as a Fourier decomposition
of the algebra.

K(n) has a combinatoric basis set {Er}. One basis vector Er
for each 3-colored graph ( or each bi-partite graph )

And a Fourier basis given in terms of triples of YDs QR1,R2,R3
τ1,τ2 .

1 ≤ τ1, τ2 ≤ C(R1,R2,R3).



Intro: Fourier subspace of a triple R1,R2,R3
We define the Fourier subspace, of dimension C2, of K(n) as

V R1,R2,R3 =
⊕
τ1,τ2

QR1,R2,R3
τ1,τ2

There is an explicit formula for QR1,R2,R3
τ1,τ2 in terms of

Clebsch-Gordan coefficients (expansion coefficients of Sn
invariant vectors in R1 ⊗ R2 ⊗ R3)
Useful in obtaining a characterisation of V R1,R2,R3 as the
simultaneous eigenspace of a set of operators

T (i)
k

acting on the algebra K(n).

1 ≤ i ≤ 3
1 ≤ k ≤ k̃∗



Intro : Lattices of ribbon graphs
Consider the space of real linear combinations

∑
r ar Er .

These ar define vectors in

RN (n)

Insider this Euclidean space is a lattice formed by the integer ar

ZN (n)



Intro : Kronecker coefficients and lattices of ribbon graphs

We showed, using the T (i)
k , that this integer lattice contains

sub-lattices of dimension C(R1,R2,R3)2 ( and C(R1,R2,R3) )
for each triple (R1,R2,R3).

For each triple, a basis for the sub-lattice can be identified by
constructing the null vectors of an integer matrix

X R1,R2,R3v = 0

There are combinatoric algorithms for calculating such integer
null spaces of integer matrices, e.g. techniques for Hermite
normal forms.



Intro : K(n) as a Hilbert space

K(n) is a Hilbert space and the T (i)
k are hermitian operators.

They can be used to construct Hamiltonians whose null states
span spaces of dimension C2 (or C).

These quantum mechanical systems have an interpretation as
a model of quantum mechanical membranes.



OUTLINE
I Fourier transform on C(Sn) and Z(C(Sn)) : permutations

and Young diagrams.
I Fourier transform on K(n) : ribbon graphs and Young

diagram triples.
I C2 as the number of integer vectors in a lattice of ribbon

graphs: integer matrix algorithms.
I Quantum mechanics on K(n).
I Belyi maps and quantum membrane interpretation



Part 1 : C(Sn) and Z(C(Sn))
A basis for Z(C(Sn)) is given by sums of permutations in
conjugacy classes. Let µ be a partition of n, which determines a
cycle structure and a conjugacy class of Sn. Call this class Cµ.

Tµ =
∑
σ∈Cµ

σ

TµTν =
∑
λ

nλµνTλ

The coefficients nλµν are integers.
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Part 1 : C(Sn) and Z(C(Sn))
Another basis for the centre is given by the projectors, labelled
by irreps or Young diagrams R,

PR =
dR

n!

∑
σ∈Sn

χR(σ)σ

These obey

PRPS = δRSPR

We also have

TµPR =
χR(Tµ)

dR
PR

Tµ =
∑

R

χR(Tµ)

dR
PR



Tµ acts on Z(C(Sn)) by left multiplication. The matrix
(Nµ)λν = nλµν is a ( non-negative ) integer matrix.

The eigenvalues of the integer matrix are the normalized
characters.

We also know that the normalized characters are rational -
because of the Murnaghan-Nakayama construction.

Combining these two facts, we know that χ
R(Tµ)
dR

are in fact
integers.
see e.g. Simon, representation theory.



Consider the special cases where µ is of the form [k ,1n−k ] (
k ≥ 2 ). Permutations in this conjugacy class have one
non-trivial cycle and remaining cycles of length 1.

Lemma 1: T2,T3, · · · ,Tn generate the centre of Z(C(Sn)).

Lemma 2: The normalized characters of
{χ

R(T2)
dR

, χ
R(T3)
dR

, · · · , χ
R(Tn)
dR
} distinguish Young diagrams.

Kemp-Ramgoolam “BPS states and centres of symmetric group algebras.” JHEP2020. (arXiv:1911.11649 [hep-th])

The first one uses results in MacDonald (symmetric functions
and Hall Polynomials).

The connection between the two uses the fact that a linear
combination of the form T =

∑
R aRPR with all distinct aR

generates the centre.
Canonical idempotents of multiplicity-free families of algebras Stephen Doty, Aaron Lauve, George H.

Seelinger,arXiv:1606.08900v5 [math.RT]



In fact (using GAP), we only need a small subset of
{χ

R(T2)
dR

, χ
R(T3)
dR

, · · · , χ
R(Tn)
dR
}

Using χR(T2)
dR

works for n = 2,3,4,5,7.

Using {χ
R(T2)
dR

, χ
R(T3)
dR
} works up to n = 14.

Using {χ
R(T2)
dR

, χ
R(T3)
dR

, · · · , χ
R(T6)
dR
} works up to n = 79.

For our construction we can pick any k̃∗ between k∗(n) and n.
Would be interesting to know more about k∗(n).



The study of k∗(n) in

Kemp-Ramgoolam “BPS states and centres of symmetric group algebras.” JHEP2020. (arXiv:1911.11649 [hep-th])

was motivated by
Balasubramanian, Czech, Larjo, Simon, “Integrability and information loss: a simple example,” (2006)

which was studying the problem of distinguishing LLM
geometries using a limited number of the multipole moments of
the bulk AdS fields.
Lin, Lunin, Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” 2004

The CFT duals of these are constructed using projectors PR
associated with Young diagrams.
Corley, Jevicki, Ramgoolam, “exact correlators of giant gravitons from dual N=4 SYM” 2001
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A standard basis for C(Sn) is σ ∈ Sn.

Another useful basis for C(Sn) is

QR
ij =

dR

n!

∑
σ

DR
ij (σ)σ

The use of a group-invariant inner product on V R, choice of an
orthonormal basis, and reality of reps of Sn ensures nice
identities ( see math phys textbooks e.g. Hamermesh )

DR
ij (σ−1) = DR

ji (σ)∑
σ

DR
ij (σ)DS

kl(σ) =
n!

dR
δRSδikδjl

These imply

QR
ij QS

kl = δRSδjkQR
il



The number of these matrix-basis elements is∑
R

d2
R = n!

These Q’s give an explicit Wedderburn-Artin decomposition of
C(Sn) into subspaces of dimension d2

R spanned by basis
elements which multiply as blocks of elementary matrices
labelled by R.

TkQR
ij =

χR(Tk )

dR
QR

ij

We will see analogous matrix blocks for K(n) and analogous
eigenvalue equations in terms of Tk shortly.



Part 2: Fourier transform on K(n)

In C(Sn)⊗ C(Sn) there is a subspace K(n) which is invariant
under conjugation by γ ⊗ γ. A basis in this subspace consists
of averages over the equivalence classes Rib(n).

Let r be an index for the equivalence classes in Rib(n). Recall

|Rib(n)| =
∑

p

|Sym(p)| =
∑

R1,R2,R3

C(R1,R2,R3)2

For each equivalence class

Er =
1
n!

∑
γ∈Sn

γτ
(r)
1 γ−1 ⊗ γτ (r)2 γ−1



Part 2: Fourier transform on K(n)

Use the product in C(Sn)⊗ C(Sn) to multiply these. The
outcome is within the subspace. K(n) is a sub-algebra.

Er =
1

|Orb(r)|
∑

a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)2 (a)

The Er form the geometric basis of K(n).



Part 2: Fourier transform on K(n)
There is also a Fourier basis labelled by triples of Young
diagrams.

Q
R1,R2,R3
τ1,τ2 =

dR1
dR2

n!2
∑

σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

C
R1,R2 ;R3,τ1
i1,i2 ;i3

C
R1,R2 ;R3,τ2
j1,j2 ;i3

D
R1
i1 j1

(σ1)D
R2
i2 j2

(σ2)σ1 ⊗ σ2

=
∑

i1,i2,i3,j1,j2

C
R1,R2 ;R3,τ1
i1,i2 ;i3

C
R1,R2 ;R3,τ2
j1,j2 ;i3

Q
R1
i1,j1
⊗ Q

R2
i2 j2

Irreps R, orthonormal basis :

Young diagram R,V R,DR(σ) : VR → VR; DR
ij (σ)

V R1 ⊗ V R2 ; DR1(σ)⊗ DR2(σ) ;

V R1 ⊗ V R2 =
⊕
R3

VR3 ⊗ V R3
R1,R2

Clebsch-Gordan coefficients CR1,R2;R3,τ1
i1,i2;i3

are inner products
< R1, i1,R2, i2|R3, i3, τ > where |R3, i3, τ > chosen to be
orthonormal basis for VR3 ⊗ V R3

R1,R2

1 ≤ τ1 ≤ Dim(V R1,R2
R3

) = C(R1,R2,R3)
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With i , j ’s running over an orthonormal basis, using properties
of the D’s and Clebsch’s, we can show that

(γ ⊗ γ)QR1,R2,R3
τ1,τ2

(γ−1 ⊗ γ−1) = QR1,R2,R3
τ1,τ2

QR1,R2,R3
τ1,τ2

Q
R′1,R

′
2,R
′
3

τ ′2,τ3
= δR1R′1

δR2R′2
δR3R′3

δτ2τ
′
2
QR1,R2,R3
τ1,τ3

This gives the explicit decomposition into simple matrix
algebras ( as expected according to Wedderburn-Artin
theorem). Blocks labelled by triples (R1,R2,R3).



Part 2 : Fourier transform for K(n)

For each Young diagram triple (R1,R2,R3) we define a Fourier
subspace

V R1,R2,R3 =
⊕
τ1,τ2

QR1,R2,R3
τ1,τ2

These subspaces can be characterised as eigenspaces of
operators T (i)

k ⊂ K(n).

We define

Tk =
∑
σ∈Ck

σ

These are sums of permutations with the cycle structure
[k ,1n−k ].



From each Tk ∈ Z(C(Sn))) we define three linear operators on
K(n), acting by left multiplication :

T (1)
k = Tk ⊗ 1 =

∑
σ∈Ck

σ ⊗ 1

T (2)
k = 1⊗ Tk =

∑
σ∈Ck

1⊗ σ

T (3)
k = ∆(Tk ) =

∑
σ∈Ck

σ ⊗ σ



We find that

T (1)
k QR1,R2,R3

τ1,τ2
=
χR1(Tk )

dR1

QR1,R2,R3
τ1,τ2

T (2)
k QR1,R2,R3

τ1,τ2
=
χR2(Tk )

dR2

QR1,R2,R3
τ1,τ2

,

T (3)
k QR1,R2,R3

τ1,τ2
=
χR3(Tk )

dR3

QR1,R2,R3
τ1,τ2

T (i)
k are central operators in K(n), and their eigenvalues only

depend on the Ri labels of the Fourier subspace V R1,R2,R3 .



The Fourier subspace V R1,R2,R3 is uniquely characterised by
using the eigenvalues of

{T (1)
2 , · · · ,T (1)

k̃∗
; T (2)

2 , · · · ,T (2)
k̃∗

; T (3)
2 , · · · ,T (3)

k̃∗
}

which are the normalized characters

{χ
R1 (T2)

dR1

, · · · ,
χR1 (Tk̃∗

)

dRk

;
χR2 (T2)

dR2

, · · · ,
χR2 (Tk̃∗

)

dR2

;
χR3 (T2)

dR3

, · · · ,
χR3 (Tk̃∗

)

dR3

}



Explicitly constructing the DR
ij and the Clebsch’s is hard - and

not obviously a combinatoric operation.

But we can construct the subspace V R1,R2,R3 using the
geometric basis.

T (i)
k Er =

∑
s

(M(i)
k )s

r Es

with

(M(i)
k )sr = Number of times the multiplication of elements in the sum T (i)

k
with a fixed element in orbit r to the right produces an element in orbit s.



The vectors in the Fourier subspace for a triple (R1,R2,R3)
solve the following matrix equation

M(1)
2 −

χR1
(T2)

d(R1)
...

M(1)
k̃∗
− χR1

(Tk̃ )

d(R1)

M(2)
2 −

χR2
(T2)

d(R2)
...

M(2)
k̃∗
−

χR2
(Tk̃∗

)

d(R2)

M(3)
2 −

χR3
(T2)

d(R3)
...

M(3)
k̃∗
−

χR3
(Tk̃∗

)

d(R3)



· v = 0



This rectangular array gives the matrix elements of a linear
operator mapping K(n) to 3(k̃∗ − 1) copies of K(n), using the
geometric basis of ribbon graph vectors for K(n). The
normalized characters are integers.

Renaming as XR1,R2,R3 the integer matrix in the above equation
we have

XR1,R2,R3 · v = 0



Part 3: Integer matrix algorithms for null spaces

The null space of the integer matrix XR1,R2,R3 has a basis given
by integer null vectors.

This can be found by taking (X T
R1,R2,R3

) and finding its hermite
normal form.

This amount to finding a unimodular matrix U (an integer matrix
with determinant±1) and a matrix h with special triangular form.

H = UX T



I H is upper triangular (that is, Hij = 0 for i > j), and any
rows of zeros are located below any other row.

I The leading coefficient (the first non-zero entry from the
left, also called the pivot) of a non-zero row is always
strictly to the right of the leading coefficient of the row
above it; moreover, it is positive.

I The elements below pivots are zero and elements above
pivots are non-negative and strictly smaller than the pivot.

Example :

H =

1 0 40 −11
0 3 27 −2
0 0 61 −13





There are integer algorithms for doing producing H and U. We
implement a sequence of steps involving :

I Swop two rows.
I Multiply a row by−1.
I Add an integer multiple of a row to another row of A.

Explicit algorithms are described in textbooks such as
[H. Cohen, “A Course in Computational Algebraic Number Theory,” Springer Science & Business Media, Springer,

2000.]

And HNF algorithms for general rectangular matrices are
available in GAP.
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M =

1 1 2
0 −1 −1
3 2 5


Mv = 0

1 1 2
0 −1 −1
3 2 5

−1
−1
1

 =

0
0
0



(−1)

1
0
3

+ (−1)

 1
−1
2

+ (1)

 2
−1
5

 =

0
0
0





The null vectors can be constructed by integer algorithms (e.g.
in GAP) for finding Hermite Normal Forms H of matrix MT

H = UMT

U is unimodular - integer matrix with determinant ±1. In this
case

H =

1 0 3
0 1 1
0 0 0

 U =

 1 0 0
1 −1 0
−1 −1 1





To see that the connection between vanishing rows of H and
the corresponding rows of U is general :

UX T = H

can be written as : ∑
j

UijX T
jk = Hik∑

j

UijXkj = Hik

A vanishing row of H means that we have an i for which Hik = 0
for all k . Then fixing i , we have a vector Uij obeying∑

j

XkjUij = 0



The number of zero rows is equal to the dimension of the null
space of X .

The rows of U corresponding to the zero rows of h give integer
null vectors of X R1,R2,R3 .

The number of these null vectors is equal to C(R1,R2,R3)2.



To summarize
I So we start with an integer matrix (constructed from

integer structure constants of K(n) @ T 9i)
k on Er basis and

integer normalized characters ).
I Perform integer row operations and arrive at the null

vectors.
I We count the null vectors. We obtain C2.
I The null vectors are a set of vectors in

Z|Rib(n)|

Taking integer linear combinations of these basis null
vectors generates a sub-lattice.
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Part 4: Quantum mechanics - non-degenerate inner product
We mentioned the Wedderburn-Artin decomposition of the
algebra K(n). This exists for algebras which are associative
and have a non-degenerate bilinear form.
The non-degenerate bilinear form on K(n) is inherited from
corresponding one on C(Sn)⊗ C(Sn).

δ(σ1 ⊗ σ2; τ1 ⊗ τ2) = δ(σ1τ
−1
1 )δ(σ2τ

−1
2 )

On the geometric basis

δ(Er ; Es) =
1

|Orb(r)|
δrs

Can use this to define a non-degenerate inner product
(sesquilinear non-degenerate pairing)

g(
∑

r

λr Er ;
∑

s

µsEs) =
∑
r ,s

λ∗µsδ(Er ,Es)



Part 4: Quantum mechanics - Hermitian T (i)
k

The T (i)
k operators are hermitian

g(T (i)
k v ; w) = g(v ; T (i)

k w)

Linear combinations

H =
∑
k ,i

ak ,iT
(i)
k

for real ak ,i are hermitian operators.



Part 4: Quantum mechanics - Hamiltonians

In addition to distinguishing the Fourier subspaces with these
lists, we can also distinguish them using linear combinations

H =
3∑

i=1

k∗∑
k=2

ai,kT (i)
k

For appropriate choices of integers ai,k .

The corresponding eigenvalues are :

ωR1,R2,R3 =
3∑

i=1

k∗∑
k=2

ai,k χ̃Ri (Tk )
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M(i)
k is an integer matrix ( entries are either zero or positive

integer).

Finding the eigenvalues and eigenvectors of H amounts to
finding the eigenvalues/eigenvectors of

X =
∑
k ,i

ai,kM
(i)
k

The eigenvalues are known combinatorially constructible
(Murnaghan-Nakayama Lemma) quantities. The eigenvectors
in V R1,R2,R3 for fixed triple (R1,R2,R3) obey the equation

Xv = ωR1,R2,R3v

So the constructions which we described in terms of
rectangular matrices can be done with square matrices since
H : K(n)→ K(n).



Part 5: Bi-partite graphs and Branched covers

We saw that bi-partite grphs with n edges are in 1-1
correspondence with equivalence classes of permutation pairs
(τ1, τ2) with the equivalence

(τ1, τ2) = (γτ1γ
−1, γτ2γ

−1)

Given a pair (τ1, τ2), define a third

τ3 = (τ1τ2)−1

so that

τ1τ2τ3 = 1



Part 5: Bi-partite graphs and Branched covers

Equivalently bi-partite graphs are in 1-1 correspondence with
triples (τ1, τ2, τ3) with

τ1τ2τ3 = 1

(τ1, τ2, τ3) ∼ (γτ1γ
−1, γτ2γ

−1, γτ3γ
−1)

These describe branched covers of the sphere with 3 branch
points (called Belyi maps). Genus h of the covering surface is
given by the Riemann-Hurwitz formula

(2h − 2) = n(−2) + B(τ1) + B(τ2) + B(τ3)

B(τi) is the branching number.

(2h − 2) = n − Cτ1 − Cτ2 − Cτ3



For each of these 3-point branched covers with degree n we
have a basis vector Er ∈ K(n).

The time-evolved state

Er (t) = e−iHtEr

using one of the Hamiltonians described above is a
superposition of curves (each equipped with a branched
covering map to a sphere).

Can be viewed as a model describing a membrane theory with
S2 × R target space. Initial state of a single cover can evolve
into a superposition of curves.
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Belyi and Q

Belyi’s theorem It is known that curves defined over Q admit
3-point branched covering maps to the sphere. These maps
are also algebraic ( defined using numbers in Q ).

This has not played a big role in studies of K(n) so far –
something for the future.
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Remarks/open questions

Estimate k∗(n) as n becomes large ....

Verifying whether a vector v in K(n) is annihilated by XR1,R2,R3

is computationally expensive - because of the n! growth of the
dimension of K(n).

If there was a way to verify this in time which is polynomial in n
– the computational complexity theorists would be very
interested.

Minimal sets of generators for K(n) or for its centre would help
improve the algorithms we have given so far.
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Find continuum descriptions of these quantum membrane
models ? ( e.g. along the lines of Horava (2008): Membranes
at quantum criticality? )

In tensor models, we encounter

K(∞) =
∞⊕

n=0

K(n)

and Hamiltonians which mix different n. Tensor models could
be an avenue towards continuum descriptions.



Similar to the relation between K(n), tensor model observables
and Kronecker coefficients, there is a relation between a family
A(m,n) of algebras, labelled by two integers (m,n) ; LR
coefficients ; and 2-matrix model invariants.

Dim(A(m,n)) =
∑

R1`m,R2`n,
R3`(m+n)

g(R1,R2,R3)2

Fourier bases QR1,R2;R3
τ1,τ2 have been constructed

P. Mattioli and S. Ramgoolam, “ Permutation centralizer algebras and multi-matrix invariants ,” Phys. Rev. D 93,

065040 (2016), arXiv:1601.06086v1 [hep-th]

originating from constructions in multi-matrix models
“Exact Multi-Matrix Correlators,” Rajsekhar Bhattacharyya, Storm Collins(Witwatersrand U.), Robert de Mello Koch

and subsequent work reviewed in
“Permutations and the combinatorics of gauge invariants for general N” Sanjaye Ramgoolam; Proceeedings, Corfu

2016



Role of ribbon graphs in this case is played by 2-color
necklaces. Permutation equivalence classes :

σ ∈ Sm+n
σ ∼ γσγ−1 for γ ∈ Sm × Sn ⊂ Sm+n

LR coeffs and lattices of necklaces ..



Appendix A : Constructing C2 and constructing C.

We have given a sub-lattice construction of C2. What about C?

There is an operation S : K(n)→ K(n) which obeys S2 = 1 ;
acts by inverting the two permutations in C(Sn)⊗ C(Sn).

Acting on the geometric basis, a number of Er obey

S(Er ) = Er

These are self-conjugate ribbons.

For a self-conjugate ribbon (τ1, τ2), there exists a γ such that
(τ−1

1 , τ−1
2 ) = (γτ1γ

−1, γτ2γ
−1) For non-self-conjugate (τ1, τ2)

and (τ−1
1 , τ−1

2 ) belong to distinct orbits.



Remaining ribbons are paired up by S. We have corresponding
vectors {En,S(En)}.

The S = +1 eigenspace of K(n) is spanned by the
self-conjugate ribbons and the symmetric combinations
En + S(En).

On the Fourier basis QR1,R2,R3
τ1,τ2 , the effect of S is to keep

R1,R2,R3 unchanged and to swop the τ1, τ2. As a result S = 1
eigenspace in V R1,R2,R3 has dimension

C(C + 1)/2

Integer matrix algorithms can be used to construct a sub-lattice
of this dimension. Finding null vectors of(

XR1,R2,R3

S − 1

)



The dimension of S = −1 in V R1,R2,R3 is

C(C − 1)/2

Find the sub-lattice basis vectors by finding null vectors of(
XR1,R2,R3

S + 1

)

Choose an injection between from the smaller set of sub-lattice
generators to the bigger set. The complement of that will have
exactly C vectors.

This gives a construction of C.



An interesting corollary of the properties of S is the identity

Number of self-conjugate ribbons =
∑

R1,R2,R3

C(R1,R2,R3)

Remarks

This construction of C2 ( subsequently C) uses rep theory input - action of Tk in Q
R1,R2,R3
τ1,τ2 in terms of normalized

characters (which are combinatorially constructible using MN-Lemma). Can this be made purely combinatoric ?

Requires proving directly that the matrices corresponding to T (i)
k on the geometric ribbon graph basis ( the Er ) have

eigenvalues given by the MN result.

There are integer matrix algorithms for smith normal forms. X = UDV . D is diagonal. Perhaps there is some
connection between the entries of D and the eigenvalues in this case. Also need to understand, without rep theory,
but only integer matrices, why the multiplicities are C2 (where these are expressed in terms of the sum of products
of χ ). Does not look easy !




