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Summary:

For a (2+1)d very susy gauge theory with
Higgs branch X, we consider the analog
of (4+1)d Nekrasov function with an in-
sertion α at the origin and β at infinity of
the flat space C = C. Work equivariantly
with respect to GL(1) ∋ q acting in the
source.

Here α is a K-theory class on X and β is best treated as an elliptic coho-
mology class on X, so this count is like an operator Ψ from one theory to
the other.



Main formula:

(α,Ψβ) =

∫
|xi|=1

Stab(α)
∣∣
q=0

Stab(β)
∏

Γq(. . . )∏
Γq(. . . )

dHaar(x) , (7)

where Γq is the q-analog of the Γ-functions, and Stab(β) is a certain canonical
extention (interpolation) of β from X to the ambient stack.

Such integrals solve interesting q-difference equations and contain lots of
other interesting (including, number-theoretic) information.



It is an ancient problem to find a polyno-
mial f (x) that takes given values f (ai) at
the poins a1, . . . , an:

f (x) =

n∑
i=1

f (ai)
∏
j ̸=i

x− aj
ai − aj

.

This also works when some ai collide and
is really an iterpolation from the subset

S =
∪
i

{x = ai} ⊂ {(x, a1, . . . , an)} .



Same logic works for Laurent polynomials, where there is more flexibilty:

f (x) =

n∑
i=1

f (ai)

(
x

ai

)L∏
j ̸=i

x− aj
ai − aj

.

This interpolation polynomial satisfies

deg f = Newton polygon(f ) ⊂ [L,L + n− 1] .



Next comes intepolation for sections of a
line bundle L on an elliptic curve E.

Line bundles L on

E = C×/qZ , |q| < 1 ,

may be described as solutions of

f (qx) = cx−df (x) , d = degL ,

where d is the degree of a line bundle and
c ∈ E is a continuous parameter for L .



By Riemann-Roch, L has d sections

dimΓ(L ) = degL

for d > 0.

Each section f has d zeros {x1, . . . , xd},
such that

z =
∏

xi mod qZ ∈ E

is fixed, and, basically, equals c above.

In practical terms,
f = const

∏
ϑ(x/xi),

where ϑ is the unique section of the unique bundle with divisor {1} ⊂ E.



The interpolation problem is thus whether the restriction map

Γ(Lz) ∋ f (x) 7→ (f (a1), . . . , f (ad)) (1)

is an isomorphism.

Clearly it has a kernel if and only if∏
ϑ(x/ai) ∈ Γ(Lz) ⇔ z =

∏
ai ∈ E .

Thus (1) has an inverse with a pole in z of the form ϑ(z/
∏

ai)
−1.



These basic facts may be revisited via the in-
terpretation of the set

S =
∪
i

{x = ai} ⊂ {(x, a1, . . . , an)}

as

S = spectrum of the equivariant
cohomology/K-theory/elliptic cohomology
of the projective space Pn−1



Recall the role that characters play in representation theory.

The map

representation V
of a group G

character−−−−−−−−−→ function χV (g) = trV g
on the group G

is a ring homomoprhism with respect to the operations ⊕, ⊗, and ⊖, where
the latter is added formally.

For instance, if G = (C×)n with coordinates ai then

representation
ring of (C×)n

= Z[a±1
1 , . . . , a±1

n ] .



If G acts on a topological space M then
KG(M) is the ring of vector bundles with
linear action of G, under the operations
⊕, ⊗, and ⊖.

If M is itself a vector space then

KG(M) =KG(point)
= representation ring of G .

Characters are replaced by functions χV (g) =
∑

i(−1)i trHi(V ) g



Let the tori
G1 = SpecC[x±1] , G2 = SpecC[a±1

1 , . . . , a±1
n ]

act on Cn by (x, a) 7→ diag(a1/x, . . . , an/x). Then

Z[x±1, a±1
i ] = KG1×G2(C

n)

→ KG1×G2(C
n \ 0)

= KG2((C
n \ 0)/G1)

= KG2(P
n−1)

= Z[S ]

is the restriction map that the interpolation
aims to invert.

Indeed,
∏
(1− x/ai) = the equation of S is the K-class of the skyscraper sheaf at 0 ∈ Cn.



In this example,

Cn \ 0 = (semi)stable locus for the action of G1 on Cn

meaning that
Pn−1 = GIT quotient Cn//G1 .

Thus, a fancy way to phrase the interpolation problem is to ask for a section
of the restriction map

KG2(quotient stack [C
n/G1]) → KG2(GIT quotientCn//G1),

and similarly for cohomology classes, and elliptic cohomology classes.



If we replace Pn−1 by the Grassmannian

Gr(k, n) = Mat(n× k)//GL(k)

then it is about interpolation of symmetric polynomials in x1, . . . , xk at points
of the form

x = (ai1, . . . aik) , 1 ≤ ai1 < · · · < aik ≤ n .

Schubert calculus is closely related the corresponding Newton interpolation
polynomials, as first noticed probably by Lascoux and Schützenberger a long
time ago.



One can encounter the K-theory of the Grassmannian, and the interpolation
questions, computing integrals of the form

χf(a) =

∫
f (x)

∏
i ̸=j(1− xi/xj)∏
i,k(1− xi/ak)

dHaar(x) ∈ Z[a±1
i ]

by residues.

These already look like the integral solutions of certain q-difference equa-
tions below, with the following differences.



The first difference, is that instead of poles of the form (1 − xi/ak)
−1, we

want Γq(xi/ak), where

Γq(w) =
1

(1− w)(1− qw)(1− q2w) · · ·
, |q| < 1 .

Poles form progressions with denominator q, whence elliptic interpolation
will be important.

Γq-functions arise when we replace an algebraic variety X = Gr(k, n) by
Maps(C, X), where q ∈ C× acts naturally on the domain of the map.



The second difference is that prefer to deal with balanced expressions like

Γq(qw)

Γq(ℏw)
→ (1− w)1−c , q → 1, logq ℏ → c .

This means replacing X = Gr(k, n) by the symplectic manifold T ∗X, where
the variable ℏ ∈ C× scales the cotangent directions. It is analogous to the
variable t in the Macdonald-Cherednik theory.

In terms of quotients, this means

Gr(k, n) = Mat(n× k)//GL(k) ↪→ T ∗Mat(n× k)////GL(k) = T ∗Gr(k, n) ,

where //// denotes algebraic symplectic reduction.



We now consider the following general setup:

X = T ∗M////G

where G is reductive, and M is a representation of G. It can be replaced
by an affine symplectic algebraic G-variety, and has to satisfy certain as-
sumptions like the absense of strictly semistable points.

We choose G̃ in

G ⊂ G̃ ⊂ Normalizer(G) ⊂ GL(T ∗M) .

E.g. for X = T ∗Gr(k, n) the variables ai and ℏ are in G̃. In the gauge theory
context, the group G̃ combines gauge and flavor symmetries.



We have

EllG̃/G(X) //

��

EllG̃(T
∗M) ∼= Erk G̃

/
Weyl

��

EllG̃/G(pt) Erk(G̃/G)
/
Weyl

and we can ask about extension/interpolation of elliptic cohomology classes
(that is, sections of certain line bundles).



Line bundles on an abelian variety have degree (which has to do with the
codimension of an elliptic cohomology class) and also continous moduli ̶
and we especially need those that come from characters of the group G like
the variable z in the Pn−1 example. We denote them collectively by

z ∈ characters(G)⊗ E .

For interpolation above we will choose the degree that correspond to La-
grangian cycles in X and we would further require the interpolants to be
supported on µ−1(0) where

µ : T ∗M → Lie(G)∗

is the moment map in the symplectic reduction.



THEOREM 1

This interpolation problem has a unique solution in rational functions of z.

This is a nonabelian version of stable envelopes and we will denote it by
Stab.

Its poles in z have a very interesting enumerative meaning ̶ they are the
so-called Kähler roots of X.



We will now turn to operator Ψ defined by

(α,Ψβ) =

∫
|xi|=1

Stab(α)
∣∣
q=0

Stab(β)
∏

Γq(. . . )∏
Γq(. . . )

dHaar(x) , (7)

where the argument of the Γq functions come from the weights in T ∗M and
Lie(G) like they did in the Grassmannian example.



THEOREM 2

The integral (7) is the K-theoretic count of maps f : C → X weighted by
zdeg f and with certain boundary conditions at 0,∞ indexed by classes α and
β.

thus one can apply an old theorem (from joint work with A. Smirnov) and
deduce

COROLLARY

The integral (7) satisfies q-difference equations in all variables that gen-
eralize the quantum Knizhnik-Zamolodchikov equations of I. Frenkel and
N. Reshetikhin and the dynamical equations of A. Varchenko and his col-
laborators.



Why would one want to count curves in X and
what is the meaning of these counts ?

X can be written as

X = Crit(W )/Gc

where the function W combines the complex
and real maps for the action of

Gc = maximal compact ⊂ G .



X is the Higgs branch of the moduli space
of vacua in a (2+1)-dim susy gauge theory
with

Gc = gauge symmetry ,

G̃c/Gc = flavor symmetry ,
T ∗M = matter .

Maps to X are modulated vacua and the
holomorphic ones respect a certain su-
persymmetry.

In one language, we describe a physical theory as a susy σ-model with target X, the Higgs branch. In the

dual Landau-Ginzburg-type description, we have the integrals and the Coulomb branch of the theory.



We compute the G̃-equivariant index of a cer-
tain virtual Dirac operator on the moduli of
holomorphic maps from a Riemann surface C
to X.

Complex, but real computation in K-theory of
certain well-defined moduli spaces.

The index with them is morally the same as the
index of the full evolution operator in (2+1)-
dimensional gauge theory, which is why many
physicists think about it.



The most important count is in flat space C = C
with boundary conditions at 0 and at infinity.
Compare and contrast with Nekrasov functions
in (4+1)-dimensional gauge theories. Have to
be done equivariantly with respect to GL(1) ∋ q
acting in the source.

Carries two indices in K(X), so it is like a ma-
trix which we denote by Ψ.

On formal geometric grounds, solve a q-difference equations in all variables.
These include the difference analog of the Dubrovin connection from the
quantum cohomology of X.



At q = 1, a flat q-difference connection gives a bunch of commuting matrices.

Around 2007, Nekrasov and Shatashvili computed their spectra and found
it has a typical shape of Bethe equations. Whence the conjecture that the
whole counting problem is solved by certain quantum groups.

The corresponding groups, including the ellliptic ones, can be constructed
geometrically from the stable envelopes. The integrals (7) summarize the
theory of “Bethe Ansatz” for these groups, extend a great deal of prior
research, and connect with a lot things that are being done at the IPMU !


