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Frontiers In dark matter searches

Heavy DM

Particles with m = TeV coupled to SM via the Weak or other
Interactions not constrained by collider experiments

— existing and upcoming telescopes observing multi-TeV sky with
Increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

Light DM

Particles with m < few GeV, possibly coupled to SM via a portal
Interaction, not constrained by older direct detection experiments

- development of new generation of direct detection experiments



Frontiers In dark matter searches

* Heavy DM

Particles with m = TeV coupled to SM via the Weak or other
Interactions not constrained by collider experiments

- existing and upcoming telescopes observing multi-TeV sky with
Increasing sensitivity, e.g. HESS, IceCube, CTA, Antares




Long-range interactions

If dark matter is very heavy, then:
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Long-range interactions

If dark matter is very heavy, then:

i | 1 1
A ~ ) < ~ Interaction range
re mediator
HUrel HOX Mmedi

p: reduced mass (Mmpy/2)

Relevant for various models

» Self-interacting DM

DM explanations of astrophysical anomalies,
e.g. galactic positrons, lceCube PeV neutrinos

e

« WIMP DM with Mpy 2 few TeV. [Hisano et al. 2002]

« WIMP DM with mg,, <TeV,
In scenarios of DM co-annihilation with coloured partners.




Implications of long-range interactions

Sommerfeld effect
distortion of scattering-state wavefunctions
= affects all cross-sections, incl annihilation

- Freeze-out = changes
correlation of parameters
(mass — couplings)

- Indirect detection signals

- Elastic scattering

Bound states

Unstable bound states
= extra annihilation channel

- Freeze-out
- Indirect detection
- Novel low-energy indirect detection signals

Stable bound states (particularly important
for asymmetric DM)

- Affect DM elastic scattering (screening)
— Novel low-energy indirect detection signals

— Inelastic scattering in direct detection
experiments (?)
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T Diagrammatlc representatlon of
long-range effects

¢ Dark U(1) sector

Boltzmann equations for
freeze-out

# Unitarity limit and long-range
Interactions

¢ Neutralino-squark coannihilation
scenarios



Diagrammatic representation
of long-range effects



Contact-type vs long-range interactions
Scattering processes
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Contact-type vs long-range interactions
Scattering processes
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The properties of the asymptotic states are determined by
resumming the self-interactions at infinity, via the Dyson-Schwinger equation
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— _Z%‘_  Field strength

renormalization factor

p; —my
\/E Renormalized mass
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Contact-type vs long-range interactions
Scattering processes

The particles interact at very large distance. We cannot define the
asymptotic states by isolating the particles at infinity.

What do we do?

Resum 2-particle interactions at infinity!
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Contact-type vs long-range interactions
Scattering processes
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Scattering processes

_sz}_ —

where e.g.

Contact-type vs long-range interactions
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Contact-type vs long-range interactions
Scattering processes

) ( )
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Expectation value of
relative momentum

No long-range force: ¢3(q) = 6°(q — k)

Relative momentum of
interacting particles

S gp(F) = e,

In the presence of a long-range interaction: qEE(F) is not a plane wave.



Long-range interactions
Scattering states and bound states

The Dyson-Schwinger equation with a Coulomb potential

— - where
GW — T g GW GW ~ [¢;]?/singularity

—q q

Solutions of the Schrodinger equation

continuous spectrum discrete spectrum
BT B o ~
(@ & o Yrem(@) S Prem(F)
o UTrel Kn = pa/n
Ep = my + ma + K2/ (2p) Ep = 1 + iz — ki, /(20)

where pu = mims/(my + ms) is the reduced mass
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Computing cross-sections

Annihilation Bound-state formation
P X1
P\J\’r/ ~ G(4) y X2
X1 — —2 X1 — I
G4 A '\f\/;a - G4 A®G) - bound-state ladder

X2 — — LLL X2 — — E=m;+my— |Ex]
scattering-state scattering-state

ladder ladder

E=m;+my+ &, E=mi+m,+ & radiation
Erad - gk —|_ |£B|
Mann ~ f d>k’ ﬁbk(k’) A(k!) Mgsp ~ f d*k’ d3p Cbk(k’) A(S}(kfap) Q/’:;ﬂm(p)

Many results (with analytical formulae in Coulomb limit):

KP, Postma, Wiechers: 1505.00109

KP, Postma, de Vries: 1611.01394

Harz, KP: 1711.03552, 1805.01200, 1901.10030
Oncala, KP: 1808.04854, 1911.02605, 2101.08666

More coming up: Filimonova et al. 16



Dark U(1) sector
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Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to 7y,

e N
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Thermal freeze-out with long-range interactions
Boltzmann equations

dn . .
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Thermal freeze-out with long-range interactions
Boltzmann equations

free particles: — + 3Hn = — (6™ vpa) (n2 — n® 2) - Z ({2 pa)n*— L% ng)

B
B

bound states: — + 8Hnyg =+ ((02°F vya) n* — 2" TLB)@(HB —mgt)= ¥ (T — T nny)

dilution due to
expansion of
the universe

Typically large enough, '8 > H,
to keep bound states close to equilibrium

= set dng/dt+ 3Hng ~0
=> get algebraic equations for ny in terms of n, ny’
= re-employ it in Boltzmann equation for n

Ellis, Luo, Olive: 1503.07142
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Thermal freeze-out with long-range interactions
Boltzmann equations

dn ;. . . :
free particles: o +3Hn = — (6™ vpa1) (112 — n® 2) - Z ({2 Bea) 1> — L2" 1ig)

B

dng
bound states:

m +3Hn; =+ ((O'BBSF Vyel) N2 — I‘i:’" nB)—I‘gCC (ns = nt;q) N =

Y

dn
— +3Hn = —(0°Tv,q) (n? — n® ?)
dt
where, neglecting bound-to-bound transitions,

dec
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X
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B

For transitions, see
poster by Graham White
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Thermal freeze-out with long-range interactions
Boltzmann equations

d
d—? +3Hn = —(aegvrel)

where, neglecting bound-to-bound transitions,

(0T Vret) = (0™ Vrat) + Y (02 Vper)
B

(n2 — ned 2)

dec
FB

X
Ide i
dec I 101N

At T > Binding Energy = F;)“ s> Ff-sl@c-_

I\dec

B
fvl.Gl) I‘ion
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Independent of actual BSF cross-section!

eq
ns dec

(nea)? ~®

BSF

(ag BSF

~ (o

Vrel )

. 9

=
9%

I'dec oc (08 ve1) — modest increase over the direct annihilation,
but increases exponentially as T' drops.

“Ionisation equilibrium?”
Binder, Covi, Mukaida: 1808.06472

dec
FB

[‘gec _|_ I‘g)n

BSF

<O-s BSF,

Urel) e <O-5 Ul'el) .

Typically, most of DM destruction
due to BSF occurs in this regime.

At T < Binding Energy = I''®® « rdec,

22



Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to 7y,

I e 11
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Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to 7y,

Ajuenun snem-s

7/ von Harling, KP: 1407.7874
Baldes, KP: 1703.00478

102 100 10*  10°
my [GeV]
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Unitarity limit and long-range interactions
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Partial-wave unitarity limit

4 (20 + 1)
£ £
o-i(n()alvl‘el < o-fm)ivrfﬂ — M2

bm Urel

Implies upper bound on the mass of thermal-relic DM
Griest, Kamionkowski (1990)

Two assumptions

4 .
il to be questioned

OannVUrel = 2.2 X 10_26 Cms/s g T —
MDM’Ure]

1. “one does not expect
(W2 )2 = (6T /Mpy)V/? T3 0.49 OVpel X 1/0yq for

e o 2 annihilation channels in a
non-relativistic expansion.”

o Mo~ 117 TeV,  self-conjugate DM 2. The s-wave yields the
T ] 83 TeV, non-self-conjugate DM dominant contribution to the

annihilation cross-section.
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Partial-wave unitarity limit

47 (20 + 1)
(£) (&) _
O inelVrel S T uniUrel = M?2
DM'UI'EI
>

Implies upper bound on of thermal-relic DM

ons
s tioned

. “one does not expect
OVpel X 1/v;e for
annihilation channel

2 \1/2 — (6T /M. 1/2 freeze—out 0.45
(’vrel> ( / DM) MDM?% 25

in a

= 117 TeV, self-cOugas -
T 83 TeV, non-self-conjugate DM dominant contribution to the

annihilation cross-section.
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Partial-wave unitarity limit

4mw(26 + 1
O'i(xft)elvrel S O'm(fn)ivrel = (2 )
MDM'UreI

1) Velocity dependence of o,

p
Assuming ov_, = constant, setting it to maximal (inevitably for a fixed v )

and thermal averaging is formally incorrect!

.

= Unitarity violation at larger v_, non-maximal cross-section at smaller v__.

/

Sommerfeld-enhanced inelastic processes exhibit exactly this velocity
dependence at large couplings / small velocities, e.g. in QED

2 2.3
o . mal 27T Qp [Vrel apSua 2T QG

o Vyel X ————
ann
M2 1 — exp(—2map/Viel) M2 Vel

= Velocity dependence of g definitely not unphysical!

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

) ()
OinelVrel S Oypi

Vrel —

47 (20 4 1)

2
MDM'Urel

», Parametric
1) yeloc/ity dependence of o,

For a contact-type interaction, mediated
by heavy particle with m,eq = Mpy,

2 N 12
aDMDM > 471

4 ~ 2 "
me g M 2 Useal

O annVrel ™~

Approaching unitarity limit requires
large coupling (no surprise)

&p ™~ m;lned/MéM 2 L.
Calculation violates unitarity if
Mmed < alp/zMDM S apMpy.

Comparison between physical scales
=> violation signals new effect at play!

What can we learn?

Hisano, Matsumoto, Nojiri, hep-ph/0212022
Baldes, KP: 1703.00478
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Partial-wave unitarity limit

()

(€)
O inelVrel

§ Juni

vre

A7 (20 + 1)
MgM'vrel

», Parametric

1) yeloc/ity dependence of g,

For a contact-type interaction, mediated
by heavy particle with m,eq = Mpy,

o2 M2 47
O annVrel ™~ 4 5 M2 .
Med DMUrel

Approaching unitarity limit requires
large coupling (no surprise)

=1,

i~

adp N

med/ DM

Calculation violates unitarity if
Mmed < O51/2]\4'DM S apMpy,.

Comparison between physical scales
=> violation signals new effect at play!

What can we learn?

Including the Sommerfeld enhancement,
for a light mediator, e.g. dark QED

2néa
M2

47
< —
~ 2

MDM’U

O ann Urel —

Urel rel

Unitarity indicates range of validity

ap < 0.86

m~J

Only numerical bound on a
dimensionless coupling

= include (resummed)
higher order corrections

Hisano, Matsumoto, Nojiri, hep-ph/0212022 30

Baldes, KP: 1703.00478




Partial-wave unitarity limit

4 (20 + 1)
£ £
o-i(n()alvl‘el < o-ful)ivlﬁ'ﬁ1 — M2

bm Urel

1) Velocity dependence of o,

Proper thermal average and taking into account delayed chemical decoupling

M 117 TeV, self-conjugate DM
T 83 TeV, non-self-conjugate DM

~_

'y 198 TeV, self-conjugate DM
) 138 TeV, non-self-conjugate DM

s-wave annihilation

Baldes, KP: 1703.00478 31



Partial-wave unitarity limit

OinelUrel X O ypiUrel 2
MDM’Ure]

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

e For contact-type interactions, higher £ are ”351 suppressed:

o0
T E E 20427
O annUrel — Cyr Urel

£ =0
e For long-range interactions:

2. .3
aD>>1irel 271. aD
7
2
M2, Urel

2 2 2 .5
(£=1) T . 2‘?TOiD/’UI.e| ap Qp>Urel 2m an,
U vrel ~ 'U . l X ].. _|_ £
M2 - ]_ — e_2ﬂQD/Urel r‘Uz M2
DM

DMUFEI

2
(£=0) TQ, 271-&13/”1‘91
o VUrel ™~ X
M?2 1 — e—2map/Vral
DM

rel

Same v, scaling (as expected from unitarity!), albeit »?

2 -
S, — af suppression.

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

g (E) v
inel Yrel

X O, piVrel =

47 (20 4 1)

MgM'vrel

(€)

2) Higher partial waves

In direct annihilation processes, s-wave dominates.
However, DM may annihilate via formation and decay of bound states.

2.3
J(£=D) aD>>vrel 271. a’D
ann rel
a M2 v,
= 3
-4
E 2 23
— =1 ap>Ure " T
°  ofer Vra 223 313 x 2
MDMvrel

L

o

Baldes, KP: 1703.00478

33



Partial-wave unitarity limit

4m(2€ + 1)

f £

o-i(m)elvl‘el < o-flr?ivrel — M2
DMUrel

2) Higher partial waves

In direct annihilation processes, s-wave dominates.
However, DM may annihilate via formation and decay of bound states.

= 8 >>er
o (&=9) D> Yrel

ann rel

same order!

= ap>Urel J
JgSFl)Urel — 3-13 X Mgmvrel £t § g @DB "|’ i § § @DB

Both s-wave and p-wave saturate their unitarity limit at a, ~ 0.86.
= Consider combined bound on the DM mass, M "7 ~ 276 TeV.

uni —

dark QED

Higher partial waves important for DM destruction in early universe
= higher M _ 34

Baldes, KP: 1703.00478




Partial-wave unitarity limit

4m(2€ + 1)

f £

oOtea < oG = 2C
DM'Urel

Can be approached or attained only by long-range interactions
Baldes, KP: 1703.00478

* Freeze-out
Sommerfeld & BSF alter predicted mass — coupling relation.
Important for all experimental probes.

* Indirect detection
Sommerfeld & BSF must be considered in computing signals.

Novel lower energy signals produced in BW
\ason Balde
35




Neutralino-squark co-annihilation scenarios
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Squark-neutralino co-annihilation scenarios

Degenerate spectrum - soft jets — evade LHC constraints

Large stop-Higgs coupling reproduces measured Higgs mass
and brings the lightest stop close in mass with the LSP

= DM density determined by “effective” Boltzmann equation

Ntot =— Ny gp -+ Nyisp

eff 2 LSP 2 LSP—-NLSP 2
o-ann T [nLSp Jann _I_ nNLSp Nysp MnLsp o-ann ]/ntot

Scenario probed in colliders.
Important to compute DM density accurately!
—~ QCD corrections
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model

1 1
L D XFidx — Jmu XX
T

+ @, +ig.GaT)X| [(9" +ig.G™ T X| — mi| X’

+ (x & X, X") interactions in chemical equilibrium during freeze-out
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Long-range interaction

¢ Xir o »
Rl EE -
. XITﬁ] o <
ROR = ) R = 16adj+ - ) for SU(3)
R
3®3 =168
Vir)=—oagm /T _
> oy = + (4/3)as attractive
Oy = Ots X [Cz(R) — C3(R)/2 0y, = — (1/6)a, repulsive
with a, ~ 0.1 at mx ~ TeV

where a, = g2/(4m)

Kats, Schwartz 0912.0526 39



DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Bound-state formation and decay

T ‘% D)

\3/ :@ —F—
= + +
Allowed transitions

(X+XNg = (X+XNy + g
X+ XNy = (X+XDE + g3
(X +XNg — (X+XN)g + g

o

Harz, KP 1805.01200: Cross-sections for radiative BSF in non-Abelian theories

In agreement with Brambilla, Escobedo, Ghiglieri, Vairo 1109.5826:

Gluo-dissociation of quarkonium in pPNRQCD
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Bound-state formation vs Annihilation

strong coupling o _~0.1
o, = 141 a2/ (27M?)

102;

BSF [8] - [1]

| RN RURRY Y 1 I N | | | R A I A 1“»|| oyl | Y Y LY T 1 0 )
1072 104 1 10 102

Harz, KP: 1805.01200 41



DM coannihilation with scalar colour triplet

MSSM-inspired toy model

40 N
- A
d
[ 5| Why is this
30 = Important?
S o
5 \J
% Indirect
Q \\\\ : detection
o 2
Q e ?g‘ \\ %
5 AR X
® TG 0
S %@E““
10 ?3,
%
%

05 10 15 20 25 30 35
Dark matter mass [TeV]

Harz, KP: 1805.01200

See also talks by
Mikko Laine and
Simone Biondini

for a different approach

Not the
final picture!
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Squark-neutralino co-annihilation scenarios

Degenerate spectrum - soft jets — evade LHC constraints

Large stop-Higgs couplino reproduces measured Higgs mass
and brings tne ligntest stop close in mass with the LSP

= DM density determined by “effective” Boltzmann equation

Ntot =— Ny gp -+ Nyisp

eff 2 LSP 2 LSP—-NLSP 2
o-ann T [nLSp Jann _I_ nNLSp Nysp MnLsp o-ann ]/ntot

Scenario probed in colliders.
Important to compute DM density accurately!
—~ QCD corrections
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The Higgs as a light mediator

Ve

* Sommerfeld enhancement of direct annihilation Harz, KP: 1711.03552
.. talk
* Binding of bound states T;\“';‘Su‘:-f‘;’ Harz Harz, KP: 1901.10030

. Formation of bound states via Higgs (doublet) emission ?

Ko,Matsui,Tang: 1910:04311

Emission of a charged scalar [or its Goldstone mode] Oncala, KP: 1911.02605
. . Sy n , : .
results in very very rapid monopole transitions ! - oncala kp: 210108667

| — yFriday i
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Conclusion

 Bound states impel complete reconsideration of thermal decoupling
at /above the TeV scale.

Unitarity limit can be approached / realised only by attractive long-range
Interactions = bound states play very important role!  gaides, kp: 1703.00478

* Important experimental implications:

- DM heavier than anticipated: multi-TeV probes very important.

—__—

- Indirect detection e
—_ Poster e
+ Enhanced rates due to BSF ~ bylasonBaldes =

+ Novel signals: low-energy radiation emitted in BSF
+ Indirect detection of asymmetric DM

— Colliders: improved detection prospects due
Increased mass gap in coannihilation scenarios
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