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Frontiers in dark matter searches

● Heavy DM

Particles with m ≳ TeV coupled to SM via the Weak or other 
interactions not constrained by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with 
increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

● Light DM

Particles with m  few GeV, possibly coupled to SM via a portal ≲ few GeV, possibly coupled to SM via a portal 
interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments
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Frontiers in dark matter searches

● Heavy DM

Particles with m ≳ TeV coupled to SM via the Weak or other 
interactions not constrained by collider experiments

→ existing and upcoming telescopes observing multi-TeV sky with 
increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

● Light DM

Particles with m  few GeV, possibly coupled to SM via a portal ≲ few GeV, possibly coupled to SM via a portal 
interaction, not constrained by older direct detection experiments

→ development of new generation of direct detection experiments

● Simple thermal-relic WIMP models live in the (multi-)TeV scale.
● Thermal-relic DM can be as heavy as few  100 TeV.⨯ 100 TeV.

How heavy can thermal-relic DM be, and  
what are the underlying dynamics of heavy (  TeV)≳ TeV)  

thermal-relic DM?
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Long-range interactions

If dark matter is very heavy, then:
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Long-range interactions

If dark matter is very heavy, then:

● Self-interacting DM
● DM explanations of astrophysical anomalies, 

e.g. galactic positrons, IceCube PeV neutrinos

● WIMP DM with  mDM  > few TeV.     [Hisano et al. 2002]

● WIMP DM with  mDM  < TeV, 
in scenarios of DM co-annihilation with coloured partners.

Relevant for various models
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Implications of long-range interactions

Bound states

● Unstable bound states
 ⇒ extra annihilation channel

– Freeze-out
– Indirect detection
– Novel low-energy indirect detection signals

● Stable bound states (particularly important 
for asymmetric DM)
– Affect DM elastic scattering (screening)
– Novel low-energy indirect detection signals
– Inelastic scattering in direct detection 

experiments (?)

Sommerfeld effect
distortion of scattering-state wavefunctions 

 ⇒ affects all cross-sections, incl annihilation

– Freeze-out ⇒  changes 
correlation of parameters  
(mass – couplings)

– Indirect detection signals

– Elastic scattering
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Sommerfeld 

effect

Bound 
states

Outline

Diagrammatic representation of 
long-range effects

Dark U(1) sector

Boltzmann equations for 
freeze-out

Unitarity limit and long-range 
interactions

Neutralino-squark coannihilation 
scenarios
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Diagrammatic representation 
of long-range effects
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Contact-type  vs  long-range interactions
Scattering processes
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Contact-type  vs  long-range interactions
Scattering processes

Field strength 
renormalization factor

Renormalized mass
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The particles interact at very large distance. We cannot define the 
asymptotic states by isolating the particles at infinity.

What do we do?

Resum 2-particle interactions at infinity!

Contact-type  vs  long-range interactions
Scattering processes
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field strength renormalization factors  /  form factors   /  wavefunctions

Contact-type  vs  long-range interactions
Scattering processes
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Potential

Contact-type  vs  long-range interactions
Scattering processes
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Relative momentum of 
interacting particles

Expectation value of 
relative momentum

Contact-type  vs  long-range interactions
Scattering processes
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Long-range interactions
Scattering states and bound states

The Dyson-Schwinger equation with a Coulomb potential

Solutions of the Schrödinger equation
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Computing cross-sections

Many results (with analytical formulae in Coulomb limit):

KP, Postma, Wiechers: 1505.00109
KP, Postma, de Vries: 1611.01394 
Harz, KP: 1711.03552, 1805.01200, 1901.10030
Oncala, KP: 1808.04854, 1911.02605, 2101.08666

More coming up:  Filimonova et al.



17

Dark U(1) sector
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Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
 

                  von Harling, KP: 1407.7874
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Thermal freeze-out with long-range interactions
 γ

D
 Boltzmann equations γ

D
 

dilution due to 
expansion of 
the universe
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Thermal freeze-out with long-range interactions
 γ

D
 Boltzmann equations γ

D
 

dilution due to 
expansion of 
the universe
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Thermal freeze-out with long-range interactions
 γ

D
 Boltzmann equations γ

D
 

For transitions, see 
poster by Graham White
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Thermal freeze-out with long-range interactions
 γ

D
 Boltzmann equations γ

D
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Long-range effects indeed 
become at m

DM
 ≳ few TeV.

Verifies expectation from
unitarity arguments!

Dominant annihilation 
mode: s-wave.

Dominant BSF 
mode: p-wave

Same order! 

Higher partial waves 
Important / dominant 
in multi-TeV regime.

DM may be even heavier!

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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Unitarity limit and long-range interactions
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Implies upper bound on the mass of thermal-relic DM   
Griest, Kamionkowski (1990)

Partial-wave unitarity limit
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Implies upper bound on the mass of thermal-relic DM   
Griest, Kamionkowski (1990)

Partial-wave unitarity limit

What are the underlying dynamics 
of heavy thermal-relic DM?

What interactions can approach / attain the unitarity limit?

What are the implications for experiments?
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1) Velocity dependence of σuni 

Assuming σvv
rel

 = constant, setting it to maximal (inevitably for a fixed v
rel

) 
and thermal averaging is formally incorrect! 

 ⇒ Unitarity violation at larger v
rel

, non-maximal cross-section at smaller v
rel

. 

Sommerfeld-enhanced inelastic processes exhibit exactly this velocity 
dependence at large couplings / small velocities, e.g. in QED 

 ⇒ Velocity dependence of σv
uni

 definitely not unphysical!

Baldes, KP: 1703.00478

Partial-wave unitarity limit
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1) Velocity dependence of σuni 

Partial-wave unitarity limit

Parametric
What can we learn?

Hisano, Matsumoto, Nojiri, hep-ph/0212022
Baldes, KP: 1703.00478
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1) Velocity dependence of σuni 

Partial-wave unitarity limit

Parametric
What can we learn?

Hisano, Matsumoto, Nojiri, hep-ph/0212022
Baldes, KP: 1703.00478
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1) Velocity dependence of σuni 

Proper thermal average and taking into account delayed chemical decoupling

Partial-wave unitarity limit

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

2) Higher partial waves

In direct annihilation processes, s-wave dominates. 

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

2) Higher partial waves

In direct annihilation processes, s-wave dominates. 

However, DM may annihilate via formation and decay of bound states.

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

2) Higher partial waves

In direct annihilation processes, s-wave dominates. 

However, DM may annihilate via formation and decay of bound states.

Bound-state ladder reduces
the order of the diagrams! 

Higher partial waves important for DM destruction in early universe
⇒  higher M

uni

same order!

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

Can be approached or attained only by long-range interactions

Generic conclusion:

In viable thermal-relic DM scenarios, 
expect long-range behaviour 

at m
DM

  ≳  few TeV!

● Freeze-out
Sommerfeld & BSF alter predicted mass – coupling relation. 
Important for all experimental probes.

● Indirect detection
Sommerfeld & BSF must be considered in computing signals.
Novel lower energy signals produced in BSF.

Baldes, KP: 1703.00478

Poster 

by Iason Baldes
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Neutralino-squark co-annihilation scenarios
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Squark-neutralino co-annihilation scenarios

● Degenerate spectrum → soft jets → evade LHC constraints

● Large stop-Higgs coupling reproduces measured Higgs mass 
and brings the lightest stop close in mass with the LSP 

 ⇒ DM density determined by “effective” Boltzmann equation

Scenario probed in colliders.
Important to compute DM density accurately!

→  QCD corrections
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Long-range interaction

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Kats, Schwartz 0912.0526
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Bound-state formation and decay

Harz, KP 1805.01200:   Cross-sections for radiative BSF in non-Abelian theories

In agreement with Brambilla, Escobedo, Ghiglieri, Vairo 1109.5826: 
Gluo-dissociation of quarkonium in pNRQCD

DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Bound-state formation   vs   Annihilation

BSF can exceed Annihilation
by more than 

an order of magnitude!

strong coupling   α
s
 ~ 0.1

σ
0
 = 14π α

s
2 / (27Μ2)

α
s
 / v

rel 

σ
 v

re
l  

/  
σ

0

Harz, KP: 1805.01200

DM coannihilation with scalar colour triplet
MSSM-inspired toy model



42Harz, KP: 1805.01200

Dark matter mass [TeV] Dark matter mass [TeV]

M
as

s 
d

if
fe

re
n

ce
 [

G
eV

]

Ω
 /

 Ω
D

M

co
lli

de
rs

Indirect
detection

Why is this 
important?

Effect on relic density:
much much larger than 
obs uncertainty in Ω

DM
 

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Not the 
final picture!

See also talks by 
Mikko Laine and 
Simone Biondini
for a different approach 
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● Degenerate spectrum → soft jets → evade LHC constraints

● Large stop-Higgs coupling reproduces measured Higgs mass 
and brings the lightest stop close in mass with the LSP 

 ⇒ DM density determined by “effective” Boltzmann equation

Scenario probed in colliders.
Important to compute DM density accurately!

→  QCD corrections

Squark-neutralino co-annihilation scenarios
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● Formation of bound states via Higgs (doublet) emission ?

Emission of a charged scalar [or its Goldstone mode] 
results in very very rapid monopole transitions !

● Sommerfeld enhancement of direct annihilation
● Binding of bound states

The Higgs as a light mediator

Ko,Matsui,Tang: 1910:04311
Oncala, KP: 1911.02605
Oncala, KP: 2101.08666
Oncala, KP: 2101.08667

Harz, KP: 1711.03552 

 
Harz, KP: 1901.10030Thursday talk 

by Julia Harz

My Friday talk
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Conclusion

● Bound states impel complete reconsideration of thermal decoupling 
at / above the TeV scale.

Unitarity limit can be approached / realised only by attractive long-range 
interactions      ⇒ bound states play very important role!     Baldes, KP: 1703.00478

● Important experimental implications:

– DM heavier than anticipated: multi-TeV probes very important.

– Indirect detection
 Enhanced rates due to BSF
 Novel signals: low-energy radiation emitted in BSF
 Indirect detection of asymmetric DM 

– Colliders: improved detection prospects due
increased mass gap in coannihilation scenarios

Poster 
by Iason Baldes
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