Dark matter bound states

Kallia Petraki

Sorbonne University, LPTHE, Paris and Nikhef, Amsterdam

Quarkonia meet dark matter 15 June 2021

Frontiers in dark matter searches

Heavy DM

Particles with $m \ge \text{TeV}$ coupled to SM via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

• Light DM

Particles with m \leq few GeV, possibly coupled to SM via a portal interaction, not constrained by older direct detection experiments

 \rightarrow development of new generation of direct detection experiments

Frontiers in dark matter searches

Heavy DM

Particles with $m \ge TeV$ coupled to SM via the Weak or other interactions not constrained by collider experiments

 \rightarrow existing and upcoming telescopes observing multi-TeV sky with increasing sensitivity, e.g. HESS, IceCube, CTA, Antares

Light DM

Parti

• Simple thermal-relic WIMP models live in the (multi-)TeV scale.

• Thermal-relic DM can be as heavy as few \times 100 TeV.

How heavy can thermal-relic DM be, and what are the underlying dynamics of heavy (≳ TeV) thermal-relic DM?

JIIS

Long-range interactions

Long-range interactions

If dark matter is very heavy, then:

$$egin{aligned} \lambda_B &\sim rac{1}{\mu v_{
m rel}}, \, rac{1}{\mu lpha} &\lesssim \; rac{1}{m_{
m mediator}} \sim {
m interaction \; range} \ &\mu: \; {
m reduced \; mass} \; (m_{
m \scriptscriptstyle DM}/2) \end{aligned}$$

Relevant for various models

- Self-interacting DM
- DM explanations of astrophysical anomalies, e.g. galactic positrons, IceCube PeV neutrinos
- WIMP DM with m_{DM} > few TeV. [Hisano et al. 2002]
- WIMP DM with m_{DM} < TeV, in scenarios of DM co-annihilation with coloured partners.

Implications of long-range interactions

•

Sommerfeld effect

distortion of scattering-state wavefunctions \Rightarrow affects all cross-sections, incl annihilation

- Freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Indirect detection signals
- Elastic scattering

Bound states

- Unstable bound states ⇒ extra annihilation channel
 - Freeze-out
 - Indirect detection
 - Novel low-energy indirect detection signals
- Stable bound states (particularly important for asymmetric DM)
 - Affect DM elastic scattering (screening)
 - Novel low-energy indirect detection signals
 - Inelastic scattering in direct detection experiments (?)

Outline

 Diagrammatic representation of long-range effects

Dark U(1) sector

Sommerfeld

Bound

states

- Boltzmann equations for freeze-out
- Unitarity limit and long-range interactions
- Neutralino-squark coannihilation scenarios

Diagrammatic representation of long-range effects

includes all connected diagrams with the 1PI factors amputated.

10

The particles interact at very large distance. We cannot define the asymptotic states by isolating the particles at infinity.

What do we do?

Resum 2-particle interactions at infinity!

In the presence of a long-range interaction: $\tilde{\phi}_{\vec{k}}(\vec{r})$ is <u>not</u> a plane wave.

14

Long-range interactions Scattering states and bound states

The Dyson-Schwinger equation with a Coulomb potential

$$\frac{\vec{q}}{\vec{q}} \begin{bmatrix} \vec{q} & \vec{q} \\ \vec{q} \end{bmatrix} = \frac{\vec{q}}{\vec{q}} + \underbrace{\sum}_{q \in [4]} G^{(4)} \begin{bmatrix} \text{where} \\ G^{(4)} \sim [\phi_{\vec{k}}]^2 / \text{singularity} \end{bmatrix}$$

Solutions of the Schrödinger equation

 $\begin{array}{lll} \begin{array}{lll} \mbox{continuous spectrum} & \mbox{discrete spectrum} \\ \phi_{\vec{k}}(\vec{q}) & \stackrel{\rm FT}{\Leftrightarrow} & \tilde{\phi}_{\vec{k}}(\vec{r}) \\ & \vec{k} = \mu \vec{v}_{\rm rel} \\ \end{array} & \begin{array}{lll} \psi_{n\ell m}(\vec{q}) & \stackrel{\rm FT}{\Leftrightarrow} & \tilde{\psi}_{n\ell m}(\vec{r}) \\ & \kappa_n = \mu \alpha/n \\ & E_{\vec{k}} = m_1 + m_2 + \vec{k}^2/(2\mu) \end{array} & \begin{array}{lll} E_n = m_1 + m_2 - \kappa_n^2/(2\mu) \end{array}$

where $\mu \equiv m_1 m_2 / (m_1 + m_2)$ is the reduced mass

Computing cross-sections

$$\mathcal{M}_{\mathrm{ann}} \sim \int d^3k' \; \phi_k(k') \; \mathcal{A}(k')$$

Bound-state formation

$$\mathcal{M}_{\scriptscriptstyle \mathrm{BSF}} \sim \int d^3k'\, d^3p \; \phi_k(k') \; \mathcal{A}^{(5)}(k',p) \; \psi^*_{n\ell m}(p)$$

Many results (with analytical formulae in Coulomb limit):

KP, Postma, Wiechers: 1505.00109 KP, Postma, de Vries: 1611.01394 Harz, KP: 1711.03552, 1805.01200, 1901.10030 Oncala, KP: 1808.04854, 1911.02605, 2101.08666

More coming up: Filimonova et al.

Dark U(1) sector

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Processes			Detailed balance
Bound state formation (BSF) Ionisation (ion)	$X+ar{X}$ $\mathcal{B}(Xar{X})+\gamma_{\scriptscriptstyle D}$	$egin{array}{lll} ightarrow \mathcal{B}(Xar{X})+\gamma_{\scriptscriptstyle D}\ ightarrow X+ar{X} \end{array}$	$\langle \sigma^{\scriptscriptstyle \mathrm{BSF}}_{m B} v_{\mathrm{rel}} angle (n^{\mathrm{eq}})^2 = \Gamma^{\mathrm{ion}}_{m B} n^{\mathrm{eq}}_{m B}$
Decay (dec)	${\cal B}(Xar X)$	$ ightarrow 2\gamma_{\scriptscriptstyle D} ~{ m or}~ 3\gamma_{\scriptscriptstyle D}$	
Transitions (trans)	${\cal B}(Xar X) \ {\cal B}(Xar X) + \gamma_{\scriptscriptstyle D}$	$egin{array}{lll} ightarrow \mathcal{B}'(Xar{X})+\gamma_{\scriptscriptstyle D} \ ightarrow \mathcal{B}'(Xar{X}) \end{array}$	$\Gamma^{ ext{trans}}_{\mathcal{B} ightarrow \mathcal{B}'} n^{ ext{eq}}_{\mathcal{B}} = \Gamma^{ ext{trans}}_{\mathcal{B}' ightarrow \mathcal{B}} n^{ ext{eq}}_{\mathcal{B}'}$

$$\begin{aligned} \frac{dn}{dt} + 3Hn &= -\langle \sigma^{\text{eff}} v_{\text{rel}} \rangle \left(n^2 - n^{\text{eq} \ 2} \right) \\ \text{where, neglecting bound-to-bound transitions,} \\ \langle \sigma^{\text{eff}} v_{\text{rel}} \rangle &\equiv \langle \sigma^{\text{ann}} v_{\text{rel}} \rangle + \sum_{g} \langle \sigma^{\text{BSF}}_{g} v_{\text{rel}} \rangle \times \frac{\Gamma_g^{\text{dec}}}{\Gamma_g^{\text{dec}} + \Gamma_g^{\text{ion}}} \\ \langle \sigma^{\text{eff}} v_{\text{rel}} \rangle &\equiv \langle \sigma^{\text{ann}} v_{\text{rel}} \rangle + \sum_{g} \langle \sigma^{\text{BSF}}_{g} v_{\text{rel}} \rangle \times \frac{\Gamma_g^{\text{dec}}}{\Gamma_g^{\text{dec}} + \Gamma_g^{\text{ion}}} \\ \langle \sigma^{\text{BSF}}_{g} v_{\text{rel}} \rangle \frac{\Gamma_g^{\text{dec}}}{\Gamma_g^{\text{dec}} + \Gamma_g^{\text{ion}}} \simeq \langle \sigma^{\text{BSF}}_{g} v_{\text{rel}} \rangle \frac{\Gamma_g^{\text{dec}}}{\Gamma_g^{\text{ion}}} = \frac{n_g^{\text{eq}}}{(n^{\text{eq}})^2} \Gamma_g^{\text{dec}} \\ &\simeq \frac{g_s}{g_\chi^2} \left(\frac{4\pi}{m_x T}\right)^{3/2} \times e^{|F_g|/T} \Gamma_g^{\text{dec}} \\ &\downarrow \\ \text{Independent of actual BSF cross-section!} \\ \Gamma_g^{\text{dec}} \propto (\sigma^{\text{ann}} v_{\text{rel}}) \to \text{modest increase over the direct annihilation,} \\ \end{aligned}$$

"Ionisation equilibrium" Binder, Covi, Mukaida: 1808.06472

but increases exponentially as T drops.

22

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Unitarity limit and long-range interactions

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} ~\leqslant~ \sigma_{
m uni}^{(\ell)} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

Implies upper bound on the mass of thermal-relic DM Griest, Kamionkowski (1990)

$$\sigma_{\text{ann}} v_{\text{rel}} \simeq 2.2 \times 10^{-26} \text{ cm}^3/\text{s} \leqslant \frac{4\pi}{M_{\text{DM}}^2 v_{\text{rel}}}$$

$$\langle v_{\text{rel}}^2 \rangle^{1/2} = (6T/M_{\text{DM}})^{1/2} \xrightarrow{\text{freeze-out}}_{M_{\text{DM}}/T \approx 25} 0.49$$

$$\Rightarrow M_{\text{uni}} \simeq \begin{cases} 117 \text{ TeV}, \quad \text{self-conjugate DM} \\ 83 \text{ TeV}, \quad \text{non-self-conjugate DM} \end{cases}$$

$$3 \text{ TeV}, \qquad \text{non-self-conjugate DM}$$

$$3 \text{ TeV}, \qquad \text{non-self-conjugate DM} \end{cases}$$

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

1) Velocity dependence of σ_{uni}

Assuming σv_{rel} = constant, setting it to maximal (inevitably for a fixed v_{rel}) and thermal averaging is formally incorrect!

 \Rightarrow Unitarity violation at larger v_{rel}, non-maximal cross-section at smaller v_{rel}.

Sommerfeld-enhanced inelastic processes exhibit exactly this velocity dependence at large couplings / small velocities, e.g. in QED

$$\sigma^{\ell=0}_{
m ann} v_{
m rel} ~\simeq~ rac{\pi lpha_D^2}{M_{
m _DM}^2} imes rac{2\pi lpha_D/v_{
m rel}}{1-\exp(-2\pi lpha_D/v_{
m rel})} ~~ \stackrel{lpha_D \gg v_{
m rel}}{\longrightarrow} ~~ rac{2\pi^2 lpha_D^3}{M_{
m _DM}^2 v_{
m rel}}$$

⇒ Velocity dependence of σ_{uni} definitely *not* unphysical!

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

1) Velocity dependence of σ_{uni}

Proper thermal average and taking into account delayed chemical decoupling

s-wave annihilation

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

• For contact-type interactions, higher ℓ are $v_{\rm rel}^{2\ell}$ suppressed:

$$\sigma_{\mathrm{ann}} v_{\mathrm{rel}} = \sum_{\ell} \sum_{r=0}^{\infty} c_{\ell r} \, \overline{v_{\mathrm{rel}}}^{2\ell+2r}$$

• For long-range interactions:

$$\sigma^{(\ell=0)} v_{
m rel} \sim rac{\pi lpha_D^2}{M_{
m DM}^2} imes \left(rac{2\pi lpha_D/v_{
m rel}}{1 - e^{-2\pi lpha_D/v_{
m rel}}}
ight) \qquad \stackrel{lpha_D \gg v_{
m rel}}{\longrightarrow} \; rac{2\pi^2 lpha_D^3}{M_{
m DM}^2 v_{
m rel}}$$

$$\sigma^{(\ell=1)} v_{
m rel} \sim rac{\pi lpha_D^2}{M_{
m _DM}^2} v_{
m rel}^2 imes \left(rac{2\pi lpha_D/v_{
m rel}}{1-e^{-2\pi lpha_D/v_{
m rel}}}
ight) \left(1+rac{lpha_D^2}{v_{
m rel}^2}
ight) \stackrel{lpha_D \gg v_{
m rel}}{\longrightarrow} rac{2\pi^2 lpha_D^5}{M_{
m _DM}^2 v_{
m rel}}$$

Same $v_{\rm rel}$ scaling (as expected from unitarity!), albeit $v_{\rm rel}^2 \rightarrow \alpha_D^2$ suppression.

Baldes, KP: 1703.00478

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

However, DM may annihilate via formation and decay of bound states.

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} ~\leqslant~ \sigma_{
m uni}^{(\ell)} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

2) Higher partial waves

In direct annihilation processes, *s*-wave dominates.

However, DM may annihilate via formation and decay of bound states.

Baldes, KP: 1703.00478

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} \ \leqslant \ \sigma_{
m uni}^{(\ell)} v_{
m rel} \ = \ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

Can be approached or attained only by long-range interactions

Freeze-out

Sommerfeld & BSF alter predicted mass – coupling relation. Important for all experimental probes.

Indirect detection
 Sommerfeld & BSF must be considered in computing signals.

 Novel lower energy signals produced in BSF.

Neutralino-squark co-annihilation scenarios

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP

⇒ DM density determined by "effective" Boltzmann equation $n_{\text{tot}} = n_{\text{LSP}} + n_{\text{NLSP}}$ $\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$ Scenario probed in colliders. Important to compute DM density accurately! → QCD corrections

$$egin{aligned} \mathcal{L} &\supset \; rac{1}{2} \overline{\chi^c} \, i \partial \!\!\!/ \chi - rac{1}{2} m_\chi \, \overline{\chi^c} \chi \ &+ \; \left[(\partial_\mu + i g_s G^a_\mu T^a) X
ight]^\dagger \left[(\partial^\mu + i g_s G^{a,\mu} T^a) X
ight] - m_X^2 |X|^2 \ &+ \; (\chi \leftrightarrow X, X^\dagger) ext{ interactions in chemical equilibrium during freeze-out} \end{aligned}$$

Long-range interaction

$$\hat{\mathrm{R}} \left\{ \begin{array}{c} X_{[\mathrm{R}]} \\ & & \\$$

Kats, Schwartz 0912.0526

Bound-state formation and decay

Harz, KP 1805.01200: Cross-sections for radiative BSF in non-Abelian theories

In agreement with Brambilla, Escobedo, Ghiglieri, Vairo 1109.5826: Gluo-dissociation of quarkonium in pNRQCD

Bound-state formation vs Annihilation

Harz, KP: 1805.01200

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$$

$$Scenario \text{ probed in colliders.}$$

$$Important \text{ to compute DM density accurately!}$$

$$\rightarrow \text{ QCD corrections}$$

The Higgs as a light mediator

 Sommerfeld enhancement of direct annihilation Binding of bound states
 Binding of bound states
 Thursday talk by Julia Harz
 Harz, KP: 1711.03552 Harz, KP: 1901.10030
 Formation of bound states via Higgs (*doublet*) emission ? Emission of a charged scalar [or its Goldstone mode] results in very very rapid monopole transitions !
 My Friday talk

Conclusion

• Bound states impel complete reconsideration of thermal decoupling at / above the TeV scale.

Unitarity limit can be approached / realised only by attractive long-range interactions ⇒ bound states play very important role! Baldes, KP: 1703.00478

• Important experimental implications:

- DM heavier than anticipated: multi-TeV probes very important.
- Indirect detection
 - Enhanced rates due to BSF
 - Novel signals: low-energy radiation emitted in BSF
 - Indirect detection of asymmetric DM
- Colliders: improved detection prospects due increased mass gap in coannihilation scenarios

