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Motivation and Introduction to Axion



Axion /Axion-like Particle

> Hypothetical pseudoscalar initially motivated by strong CP problem:
Neutron electric dipole |§|107'° e.cm is smaller than 10~% e.cm.

0= Oqcop + arg detM, My, Fine tuning!

2\ /
Why is @ so small? Why ©*7instead of ‘¢ +7?
Solution: introducing an dynamical field with effective potential

VN—mifgcos(é—&—;).
()

» Extra dimension predicts a wide range of axion mass.
Dimensional reduction from higher form fields:
e.g. AM(5D) — A*(4D) + ®(4D).

» Cold dark matter candidate behaving like coherent wave:
D(x*) =~ Po(x) coswt; by ~ @; W~ Mme.
me
Amplifications of the signals:
Tabletop experiments on earth: ppm ~ 0.4 GeV/cm3;
Astrophysical: larger p, e.g., GC or near Kerr black hole.



Hunting Axions with Event Horizon Telescope

Polarimetric Measurements

based on
arxiv: 1905.02213, Phys. Rev. Lett. 124 (2020) no.6, 061102,

arxiv: 2105.04572,
arxiv: 2110.XXXXX,

YC, Chunlong Li, Yuxin Liu, Ru-Sen Lu, Yosuke Mizuno, Jing Shu,
Xiao Xue, Qiang Yuan, Yue Zhao, Zihan Zhou



Superradiance and Gravitational Atom

> Rotational and dissipational medium can amplify the wave around.

[Zeldovichi 72]
> Superradiance: the wave-function is exponentially amplified from
extracting BH rotation energy when A. =~ rg. [Penrose, Starobinsky,
Damour et al]
» Gravitational bound state between BH and axion cloud:
d(xH) = e ™S, (0)Rim(r).

> Most efficient for (/, m) = (1,1) state
where 511 >~ Yll x sinf.

> Self interaction saturating phase: ©,,,, ~ fo.
[Yoshino, Kodama 12', Baryakht et al 20']

non-linear pumping t



Axion QED: Birefringence

1 1 e 1
L= =3 FuF" = 2o, ®Fu P 4 20490, — V(®),

v

Equation of motion for photon under axion background:

[8? — V2]AL7R = F 2g¢ﬂ,n“8u¢kAL7R.

v

Birefringent effect with different dispersion relations:

wi,R ~ kFgoyn"0,®.

> The electric vector position angle of linear polarization is shifted by
obs
Ax = ng/ n"8,® dl
emit

= 8oy [q)(tobsa Xobs) - ¢(tcmit~, Xemit )]7

v

This only depends on the initial and final background axion field values.
D (temit, Xemit) ~ fo from superradiant cloud.



Radiative Transfer with Axion Cloud (IPOLE simulation)

> Radiative transfer in terms of linearly polarized Stokes parameters:

d i U . .. .
%ZJQ‘FIJU‘FI(pE 72g¢,d )(Q+IU)

Observable on the sky plane: EVPA x = arg(Q + /i U)/2.

> An almost face-on disk (17° for M87*):

Stokes | [cgs] EVPA [deg]

& o cos [wt — P]sinf — A{x(p)) < A(p) cos [wt + ¢ + ()]

> Propagating wave along ¢ dueto /=1, m=1:
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Axion Birefringence Around RIAF (IPOLE simulation)

Alx(p)) = —A(p) cos [wt + ¢ + 0(¢)].

» Benchmark: sub-Keplerian RIAF with vertical B.
Axion mass: o = GyMpyme € [0.10, 0.44] with period [5, 20] days.
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> Phase delay is well fit by §(¢) ~ —5 « sin 17° cos ¢.

» The dominant washout/asymmetry of A(y) = O(1)ge~fs comes from
the lensed photon due to the incoherent phase!

> For smaller me, washout is negligible due to longer Ac = 1/me.



Stringent Constraints on Axion-Photon Coupling

» Differential EVPA in the time domain:

(x(e: ) = (x(p, t7)) = 25sin [wting /2] A{x())

where tiy = t; — t; = 1 day.

» Uncertainty of azimuthal bin EVPA in EHT data -

— dimensionless axion photon coupling ¢ = 27ge fo.
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[YC, Liu, Lu, Mizuno,
-9 Shu, Xue, Yuan, Zhao 21']
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» Weaker bound at small « is due to R11/Rmax and sin [wtint/2].



Prospect for next generation EHT

ETHER (81

> Horizon scale SMBH landscape with ngEHT (space, L2) = -
Broader range of axion mass: 102 eV to 107 eV. 3

Brightness
oy

» Universal birefringence signals for direct emission only:

o4 IWA, H = 0.3

6(9)/(2m)
6(9)/(2m)

0.1 (VERTICAL
sub-Kep
H=03

» Future improvements:
Correlation between AEVPA at radius without
lensed photon and different frequency;
Longer observations; S R e
Better resolution of EVPA,; !
Better understanding of accretion flow and jet. .

6(p)/(2m)

A(Q)/Gayam:




Axion Haloscope Array

With PT Symmetry

based on
arxiv: 2103.12085

YC, Minyuan Jiang, Yigiu Ma, Jing Shu and Yuting Yang



Inverse Primakoff and Haloscope [P.Sikivie 83']

V x B = 0E +J — go, (E x VO — B9, P).

> Inverse Primakoff: J.g(t) = go,BO: .
» Sikivie cavity Haloscope: (8? + v0¢ + w2) E. = Orden(t).

» Static Bg and resonant when w = mg ~ V13 ~ O(1) GHz.

e.g. ADMX, HAYSTACK



Resonant Detection for Lower mg

» Resonant LC circuit [P.Sikivie et al 14']: me = wic =

DMRADIO
500 DETECTOR

Axion-photon coupling

Mass
Assumptions: T=10 mK, Q=105, 3.5 year integration time,
B j(w) B(w) quantum-limited readout

> Resonant SRF Cavity with AC By [Berlin et al 19']

8tB0 = iwoBo, W1 — Wy = Me.

frequency = m, /20
MHz

Qini = w/7 > 10'° due to the superconducting nature.



Quantum noise limit for resonant detection

» Standard quantum limit for power law detection:
[Chaudhuri, lrwin, Graham, Mardon 18’

resonant intrinsic noise Si,¢ + flat readout noise S, .

Current Noise in receiver circuit
e

> Sensitivity to Sii, and Siy is the same.

R
SNR? x range where S;,; > S,. A

» Beyond quantum limit: Freqseney

Squeezing S, e.g., HAYSTACK.

Increasing the sensitivity to Sgi,, e.g., white light cavity in
optomechanics/GW detection [Miao, Ma, Zhao, Chen 15'].



Light Cavity  [X.Li, M.Goryachev, Y.Ma et al 20']

Uy
o, 1 amplified readout  conventional readout
| : e
Loss ~ . 9 el « i o
. Y b / I il I
[,, a i ; (1)
P T T3 %
@ . ;
; c,c b,b / a,a
Single Cavity Design Detector Design : .
gle La sig quantum amplifier conventional detector

with PT symmetry

v

Beam-splitting: hg(abt + 4h).
Non-degenerate parametric amplifier: 1G(bé + bfé).

v

v

PT-symmetry (3 <> &) emerges when g = G.
(G+¢&h) = —i(g—g)b—iad+---;

b = —yb—igla+ehy+---.
Coherent cancellation leads to double resonance.
Ssig is largely enhanced when g > intrinsic dissipation :
27,0256 (Q 2
SSIV\éLC(Q): Yr&x 2¢( )2< 2g 2>'
(v+7)+ 2\ +Q

v




Resonator Chain Haloscope

» Generalization to chain detector: ab I
) b
R -'- uasv // \

» PT-invariant mode: A; = 4; + ¢;. e -
A g, a3 2 o
A]_:—IOéq>+"', v. / \

A . oA i ay ey al,
Ai=—igAi1+-, RN
b= —~,b—ighA,. @ &) - i,
af
n + 1-times resonance! @

» The whole Hamiltonian is explitly P7 broken.

» Sqig is n-times enhanced:

27roz25¢(9)< g> )".

SRCQ) =
D=y e

sig




Binary Tree Haloscope
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» Fully PT-symmetric setup with 3; <> (_A‘;fj brings strong
robustness.

» Multi-probing sensors leads to coherent enhancement:

SBT(Q) = 227258¢(q).

sig sig



Signal to Noise Ratio and Physics Reach

» SNR?  range where Sj; > S, o 2" ( g )2"“.

YNocc

e — SY"\IlLC S{:,TZET
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» g/~ can be as large as Q.

> Large nycc at low frequency for LC circuit makes the
enhancement ineffective.

» High Q. and constant ngc. for SRF with BT can cover mg >
kHz QCD axion dark matter potentially.



» Hunting axion cloud with EHT polarimetry:
Most dense axion field saturating ® ~ fg.

» PT-symmetric array of axion dark matter detectors:
Multi-resonant systems strongly enhances the sensitivity to
signals.

» Astrophysical observations and quantum metrology
can play huge rules in the fundamental physics!



Thank you!



Appendix



Axion Coupling to the Standard Model

> Axion Fermion coupling: 8, ®y~y" s /fs,
non-linearization of a chiral global symmetry ~ 9, ®JL /fo.
Stellar cooling, DM wind/gradient.

. . ¢ <my
generated from anomaly/triangle loop diagram. @

> Axion Gluon coupling: ®TrG,, G*" /fo, Q=% i
1/f

[
Oscillating EDM. g

» Axion Photon coupling: ®F,, F*" /fy,
from mixing with neutral 7.
Photon conversion to axion, inverse Primakoff, birefringence.



Axion Field Value

O(xH) = e e ™ Sy (0) Rim(r), “

14

» Rj; at the emission point of the ring  °°
can be near the maximum, e.g. :
whose radius rpax moves farther with
smaller « = GyMppme = rg/Ac.

R/Rifmax]

» The wave function peaks at the equatorial plane of the
black hole since S11 >~ Y711 o sinf.

» Self interaction saturating phase
where O, .« ~ fo.
[Yoshino, Kodama 12', Baryakht et al 20']




Radiative Transfer and Birefringence

] ~
La—%g%www", % (1/2

> Ax = goy[®Pr — ®;] only applies to point-like source in vacuum.

> Extended sources, plasma and general relativity effect?
Radiative transfer in terms of linearly polarized Stokes parameters:

d(Q+i V)

. - . , do .
s :Jo+lju+l(pER*ngg)(QJr:U).

pUR: astrophysical faraday rotation, frequency dependent.
280~ %: gradient of axion field along geodesics, achromatic.
Observable on the sky plane: EVPA x = arg(Q + i U)/2.

> Since ® x coswt, source size > \c = 1/me can wash out the EVPA
oscillation.



EHT Polarization Data Characterization

» Four days’ polarization map with slight difference on sequential days:

April 6 April 10 April 11

| [EHT 2021]

» Uncertainty of the azimuthal bin EVPA from polsolve:

50

0

{(x) (deg.)

=50

gl Gpuil.dl 200 400 600 800 mnnlEHT 2021]

ranging from £3° to +15° for the bins used.



> Linearly polarized radiation from dense axion field:

Oscillating axion background — EVPA oscillates.

» Dissectinng superradiant axion cloud:

Superradince brings large density of axion cloud carrying angular
momentum. — AEVPA(yp) is like a propagating wave along .

> Stringent Constraints from EHT polarimetric measurements:

Using differential EVPA in time domain, the uncertainty of azimuthal
bin EVPA data on 4 days (2 pairs) can already constrain axion-photon
coupling to previously unexplored region.



Axion QED: Inverse Primakoff Effect

» Axion-electrodynamics modifies Maxwell equations:

V'E:p—gq;fyB'V(D
VXB:(‘)tE—I—J—qu(ExV(D—BOt(D)

> Neglecting spatial derivative, background By and axion dark
matter ¢ leads to effective current

Jet (t) ~ go~Bo(t)\/ppM cos met.

> Inverse Primakoff effect: the conversion of axion to an
oscillating EM field under background By.

® - Y

Bo



Astrophysical Birefringence from Soliton Core

A@’y = ga'y[a(tob37 Xobs) - a(temit,-, Xemit)],

> Large initial axion field values in galaxy center: soliton core.
Fuzzy dark matter [Hu et al 00'], with de Broglie wavelength ~ kpc scale
suppressing small scale structures and a soliton core formed inside GC.

soliton solution

;

(@) {U.OI‘J(% 4 #)"‘J[‘. pc3, forr<li,

plz) = :
SRR for r >l
NFW profile

[Schive et al 14’

Balance between quantum pressure and gravitational self interaction.



Birefringence from Soliton Core Axion

» Ultralight axion dark matter forms soliton core in the galaxy center.

AX = g‘b'y [¢(tob57 Xobs) - q)(temit,7 Xemit,)],
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> Linearly polarized photon from pulsar. [Liu, Smoot, Zhao, 19']

> Polarized radiation from Sgr A*.[Yuan, Xia, YC, Yuan et al 20']



Search Strategies

A region with:

> Large axion density
Outside black hole?

> Source for linearly polarized photon
Stable initial position angle.

Search for:

> Position angle oscillates with time;
Axion is an oscillating background field.

> Oscillation amplitude change as a function of spatial distribution.
Extended light source.

Scenarios: EHT-SMBH
Later we will see to a radiation ring instead of a point source is necessary
for polarimetric probing of axion.



Event Horizon Telescope: an Earth-sized Telescope

> For single telescope with diameter D, the angular resolution for photon of
wavelength A is around %,

» VLBI: for multiple radio telescopes, the effective D becomes the
maximum separation between the telescopes.

A Global Network of Radio Telescopes

Event Horizon Telescope (EHT)

> As good as being able to see



Supermassive Black Hole (SMBH) M8

» To see the shadow and the ring, an excellent spatial resolution is

necessary.

One of the most massive black hole ever known: 6.5 x 109M@;
Nearly extreme Kerr black hole: a; > 0.8;
Almost face-on disk with a 17° inclination angle;

Rich astrophysical information under extremal condition;

vV vV v v Y

What else can we learn?



Fate of Superradiance

Axion cloud can't keep growing exponentially. What's the fate of it?

> Self interaction of axion becomes important for f, < 10'® GeV.
[Yoshino, Kodama 12', Baryakht et al 20']

» Black hole spins down until the superradiance condition is violated
for f, > 10'® GeV. [Arvanitakia, Dubovsky 10']

> Formation of a binary system leads to the decay/transition of the
bound state. [Chia et al 18']

» Electromagnetic blast for strong (large field value) axion-photon
coupling. [Boskovic et al 18']



Weakly Saturating Axion Cloud

» When the field value is large enough, one should take into account the
non-perturbative axion potential:

» A quasi periodic phase where superradiance and non-linear interaction
induced emission balance each other with ®,cax = ao/f ~ 1.

N ’

/
/
W
PR s superradiant -
6} 4 / : »
o ; ,// \\\,/// growth s o> 4
05 % Q
0 ¢ 0
0 200 400 600 800 1000 [ ==

M

E o0 —
2 s
0

M non-linear pumping t

quasi-equilibrium

[Yoshino, Kodama 12’ 15’, Baryakht et al 20°]



Black Hole Spin Measurements [Arvanitakia et al 10’ 14']

Black Hole Spin a.

Black Hole Mass (M.)

» Comparing the timescale between the superradiance and
BH accretion, a BH with large spin can typically exclude
axion with f, > 10%° GeV.

20 exclusion 1 M3 X - _14 1o exclusion 1:NGE3783 -65

-12 gagmm! o Mkl 10
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=i S bisos 653 _ 716 q o 4 nacast -0
=57 Z S 2 =
z ElS ~75
S 16 -102 2 5 B
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S | ocos® = 8 80
® -2 Ci - Ed
-18 ot g
=75 5 o) . _85 ol
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-0 ; - ) |
- -9 T8 -7 -6 -15 -14

Log[ua/eV] Log[pa/eV]



Gravitational Collider [Chia et al 18]

» Resonant transition from one bound state to another happens
when orbital frequency 2 matches the energy gap.

» Due to the GW emission of the binary system, Q(t) slowly
increases and scan the spectrum.

» Orbits could float or shrink dependent on the transition.



Detectability of EHT

> Average effect due to the limited resolution and angular
dependent phase:

A¢d _sin(mAg/2)
/0 cos(ut + mo)dp = Tmho2 cos (ut + mA¢p/2).

» In the past, we only saw a point instead of a ring, A¢ = 2,
no birefringent effect.

> A subset of the EHT configuration previously measured the
position angle at precision of ~ 3°. It's reasonable to expect
better precision.



Misalignment Production of QCD Axion

» For QCD axion, mefe ~ /\éCD predicts a thin line in

space.

» Cosmological parameter: initial misalignment angle 0; =

Axion Coupling g,y | (GeV”

Cavity Frequency (GHz)
1 10

‘ Astrophysical bounds
Rochester

Fermilab
U Florida

‘ HAYSTAC
(19905)
"\rv

T

'
allesteros (2016),
Klaer (2017)

Berkowiz' G18) | s
G Cortona (2016) g
Petreczky (2016) e

10 100
Axion Mass peV/

the parameter

®;/fo.

Classical “post
inflation” axion
window: fine tuning
of © not required for
axions to make up
100% of observed
dark matter

» Assuming 0; ~ 1 leads to the most natural region of QCD axion dark
matter me ~ 107 %V ~ GHz.

» Different cosmological evolutions can still provide a viable dark matter
candidate in other region, e.g., PQ symmetry broken before inflation.



Property of Axion Dark Matter

Galaxy formation: virialization gave ~ 10~3¢ velocity fluctuation,
thus kinetic energy ~ 10~%mgc? currently.
Effectively coherent wave:

V2pa

Mo

d(X,t) = cos (wq,t — Eq; X+ 50) .

» Bandwidth: dwe ~ me <v]%M> ~ 10 %me, Qo ~ 10°.

10~ %eV

» Correlation time: 7¢ >~ ms o

Power law detection is used to make integration time
longer than 7¢.

» Correlation length: Ay ~ 200 m% > Ae =1/me.
Sensor array can be used within )\,.



Higher Frequency Electromagnetic Resonant Detection

Difficult to detect mg > GHz axion dark matter due to short A..

Tttt TTTTTT T

» | Dielectric Haloscope: discontinuity of E-field leads to
coherent emission of photons from each surface, up to 50
GHz. [A.Caldwell et al 17']

> |l Plasma Haloscope: using tunable cryogenic plasma to match
axion mass, up to 100 GHz. [M.Lawson et al 19']

> |ll Topological Insulator: quasiparticle in it mixing with E field
becomes polariton whose frequency can be tuned by magnetic field,
up to THz. [D.J.E.Marsh et al 19']



Quantization of Cavity/Circuit Mode

» In Coulomb gauge, vector potential can be quantized

. 1 \Y? .
Ak(r, t) = Z <2Wk) ékuk(r')e*’“’kt + h.c..
k

where ui(r) form a complete orthonormal set for a given
boundary condition and [&k, dx/] = Okk-

» The Hamiltonian for each mode reduces to harmonic oscillator
1 - . 1
Heavity = 5 | (B2 +B2) dP% =Y con (8fa+5 ).
cavity 5 / zk: k k9k 5
> In the interaction picture, the coupling to axion is

Hint = /gdw‘DE_" Bod®% = ad(4+3"), a =~ ge,Bov/meV.

» Circuit mode can be quantized in the same way

Q2 ¢? 1
N - )
Hpc = 72C+7_WLC aa—l—2



Open quantum system

A quantum-mechanical system interacting
. . A+
with the environment:

» System mode & couples to infinite degrees of freedom v,;:
[e'¢) d +00 d
/h\/ﬁ/ w“TA —aWT]+/ 2whw Wi,
—00

» Fourier transformation: 0-dim localized mode 3 couples to
an 1-dim bulk wg (transmission line):

Jr
ihn/27,8 We—o + h.c. +/h/ dE W] e ie.

[e.e]

» Equations of motion for & and outgoing mode Wy, :

= —vrd+/2yWo_; Wo, = Wo_ — /27,4



Single Mode Resonator as Quantum Sensor

» For a resonator 4§ probing weak signal ¢: « (é + §T) ()

» Readout for outgoing mode ¥, = vy, : Vr
L Q=i 2y my
= — 0 — .
TTQ+iy T Qi a-*“od

» Vacuum fluctuation in incoming mode i, = wy_ with white
noise power spectral density S, = 1.

. 2
» Resonant signal spectrum Sy, = % So(92).

+o00 2 2 2
Scan rate:/ %dﬂ = a—.
—o0 V7 +Q 2

» Trade-off between peak sensitivity and bandwidth by tuning
Vr-



Intrinsic loss and fluctuation
» However, intrinsic loss proportional to

exists, characterized by the quality factor &}/;
Qint = W/'Y- W

» According to the fluctuation-dissipation theorem, there is
. .. . 4y, .
intrinsic noise Syt () = WSUQ whose PSD contains

both vacuum and thermal fluctuations:

1 1 7 T <w
Sy =npee=(c4—" i3 '
us = floce <2+exp(w/T)—1) { L Ts>w

}VVI’

a__

D

» Standard quantum limit for power law detection:
resonant Si,¢+ flat S,. [Chaudhuri et al 18']



Beam splitting coupling

e
| p—

2

L C=— 1L, C,—

v v

» Use an additional capacitor to couple two LC circuits:

1l 1o 1 5 1 oo 1
H—2C1¢1+2C2¢2+2L1¢1+2L2¢2+2C0(¢1 2)”.

» Conjugate momentum to ¢; involves mixing. Interaction
potential:

Bhyfarnws (41 — a1) (42 — 8)) ~ 4180 + h.c.,



Non-Degenerate Parametric amplifier coupling

Ly Ly
Y Y —YY Y

Cy Co

1L 1L

Josephson Junction -

> Use a DC voltage and a Josephson junction to couple two LC

circuits:
hl 2
vV = _2—;) cos (wot + %@2 + ¢3))
hi
— _i cos (wot + ka(a2 + 32) +r3(as + ag))
0

hl
~ ﬁ1€253[3233 + agag],



Kinetic Mixing Dark Photon Dark Matter

> An additional U(1) vector can have kinetic mixing with electromagnetic
photon field through
eFL F™™.

> |t appears generally in theory with extra-dimension with a broad mass
window predicted.

» Cold dark matter candidate behaving like coherent wave:



From Axion QED to Kinetic Mixing Dark Photon

V x B = 8:E +J — go, (E x V& — B, D)

» Axion dark matter leads to an effective current under
background Bg with |Jeg(t)| ~ 8o Bo(t)\/PDM COS M t.

1/~ = . 1 - ~ I
~1 (F;WF’“’ + F,'WF"“’>+§m,2y,A;LA"‘—ngMAu+€m3/,AHA’“.
» Similarly, in the interaction basis, the background dark photon

behaves as an effective electromagnetic current with
no_ 2 Al
Jog = Em,Y,A :



Effective current induced magnetic field

» In a space screened by electromagnetic shielding, the effective
current can induce a transverse magnetic field

» For axion:

B, ~ || VY2,

~ 10 (8 (B (V'
1011 Gev i/ \1T/\1m

» For kinetic mixing dark photon (with a factor of 1/3 due to
the isotropic wave-funtion):

By ~ |Jgpl VI3,

1/3
~ 10716T (106—6> (1%71?2) <\1/m> .

» V is the volume of the EM shielding room. Magnetic field
signal is the strongest at the corner of the room.
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