Searches for ultra-light dark matter with the Shuket experiment

VLDM 2021 September, 27th

Pierre Brun¹ L. Chevalier¹, C. Flouzat¹, A. Hees², P. Polovodov¹, E. Savalle³, P. Wolf²

¹Particle Physics Department CEA, Université Paris-Saclay ²SYRTE Observatoire de Paris Université PSL, CNRS Sorbonne Université, LNE

³Astroparticules et Cosmologie Université de Paris, CNRS

Hidden photon dark matter

Assume new U(1) symmetry: new vector field ϕ^{μ}

Relevant part of lagrangian:

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \phi_{\mu\nu} \phi^{\mu\nu} - \frac{m^2}{2} \phi_{\mu} \phi^{\mu} - \frac{\chi}{2} F_{\mu\nu} \phi^{\mu\nu}$$

kinetic mixing with conventional photons dimensionless parameter χ

$$\chi$$
 could be 10⁻¹² / 10⁻³

K.R. Dienes *et al.*, Nucl Phys B 1997 M. Goodsell *et al.*, JHEP 2009 M. Goodsell *et al.*, JHEP 2012

Relic density of hidden photons

- * Produced non-thermally via misalignment
- ★ Oscillations of the field
- * Frequency: $f = 2.4 \text{ GHz} \times \frac{m}{10 \ \mu \text{eV}}$
- ★ In the Galaxy:

Hidden photons as dark matter

Phase space density is huge...

$$N_{\text{particles}} \simeq \frac{10^{12} \text{ M}_{\odot}}{m} \simeq 10^{83} \frac{10 \,\mu\text{eV/c}^2}{m}$$

$$N_{\text{cells}} \simeq \frac{\frac{4\pi}{3} p_{\text{max}}^3 \times \frac{4\pi}{3} R^3}{(2\pi\hbar)^3} \simeq 2 \times 10^{59} \times \left(\frac{m}{10 \,\mu\text{eV/c}^2}\right)^3$$

$$p_{\text{max}} = m v_{\text{escape}} = m \times 550 \,\text{km/s}$$

$$R \sim 50 \,\text{kpc}$$

$$\frac{N_{\text{particles}}}{N_{\text{cells}}} \simeq 5 \times 10^{23} \times \left(\frac{10 \,\mu\text{eV/c}^2}{m}\right)^4$$

P. Brun - VLDM 2021 Tokyo

Mixing with the photon

Similarly to axion/photon mixing:

$$\left(\omega^2 - k^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - m^2 \begin{pmatrix} \chi^2 & -\chi \\ -\chi & 1 \end{pmatrix} \right) \begin{pmatrix} \vec{A} \\ \vec{\phi} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(with gauge fixing such that $\phi^0 = A^0 = 0$)

Where there is dark matter, there is a small electric field:

Constraints on hidden photons

Interesting from model point of view, but no hint on the mass

Imposing Boundary Conditions

The SHUKET experiement

Dish antenna experiment

D. Horns et al. JCAP 2012 J. Jaeckel & J. Redondo, JCAP 2013 J. Jaeckel & S. Knirck, Patras 2016

SearcH for U(1) darK matter with an Electromagnetic Telescope

Expected signal power

Power of out going wave depends on

- dark matter density
- reflector area

Reach on χ depends on detectable power P_{det} :

$$\chi = 4.5 \times 10^{-14} \left(\frac{P_{det}}{10^{-23} \text{ W}} \right)^{1/2} \left(\frac{0.3 \text{ GeV/cm}^3}{\rho_{\odot}} \right)^{1/2} \left(\frac{1 \text{ m}^2}{A_{dish}} \right)^{1/2} \left(\frac{\sqrt{2/3}}{\alpha} \right)^{1/2} \left(\frac{1 \text{ m}^2}{\alpha} \right)^{1/2} \left(\frac{\sqrt{2/3}}{\alpha} \right)^{1/2} \left(\frac{1 \text{ m}^2}{\alpha} \right)^{1/2} \left(\frac{\sqrt{2/3}}{\alpha} \right)^{1/2} \left(\frac{\sqrt{2}}{\alpha} \right)^{1/2} \left$$

The reflector

Optical Test Bench at Saclay

SHUKET setup

Mirror

32 m

Horn antenna + shielding

Amplifiers + Spectrum analyzer

Achieved 10-22 W/Hz sensitivity

Constraints on hidden photons dark matter

Horn Antenna

Polarized horn antenna

1-18 GHz

2017 data taking : 5 GHz - 7 GHz
Incoming spherical wave, tiny solid angle

Spectrum analyzer

★ Room-temperature LN amplifier ~30 dB

- ★ Loan from Rhodes & Schwarz
 - 3 GHz 20 GHz FSP

- ★ Performs FFT + power measurement in 1 Hz bins
- ★ 2 weeks : ~2 GHz bandwidth analyzed (5-7 GHz)

ON and OFF runs

Search optimization

- ★ Signal is constant, broad band (~5 kHz)
- ★ Most backgrounds removed by sampling

Expected sensitivity

System noise temperature:

$$T_{\rm sys} = 554 {\rm K}$$

- 290 K environment
- 214 K Low noise amplifier
- 50 K spectrum analyser

Estimate of the noise fluctuation level:

$$P = kT_{
m sys} \sqrt{rac{\Delta_f}{ au}}$$
 Δ_f : filter width (1 Hz)
 au : measurement time (8000 s)

$$P = 8.6 \times 10^{-23} \mathrm{W}$$

Results

Power measurement w & w/o mirror

Limits on potential signals

Constraints on extra-power

Constraints on hidden photons mixing

P. B., L. Chevalier, C. Flouzat, PRL 2019

Re-analysis of Shuket

★ Based on the DAMNED experiment analysis

E. Savalle et al., PRL 2021

- ★ Use only ON data
- ★ Smooth-on data
- * Build a TS based on DM halo distribution as prior
- $\star \chi$ is a built-in parameter

Re-analysis of Shuket: smoothing

A. HEES, E. SAVALLE, P. WOLF

Re-analysis of Shuket: thresholds

95% threshold

A. HEES, E. SAVALLE, P. WOLF

Re-analysis of Shuket: exclusions

Exclusion lines on χ

A. HEES, E. SAVALLE, P. WOLF

Comparison of constraints

Comparison of constraints

Comparison of constraints

Results are confirmed with more robust method

- Tokyo 2015

x2 improved efficiency: only ON data used

40

45

50

Hidden photon mass (eV)

Future plans : Shuket 2

- ★ CEA/SYRTE collaboration
- ★ New Shuket runs 10 GHz 20 GHz

- ★ New, cryogenic low-noise amplifiers
- ★ Data taking optimized for SYRTE-style analysis
- ★ New reflector (could be cold)
- ★ New antenna
- ★ New spectrum analyzer