Searching for Dark Matter with Galileo atomic clocks

A.S. Sheremet, A. Hees, P. Wolf and P. Delva, *Observatoire de Paris - PSL, Sorbonne Université, CNRS, LNE* B. Bertrand and P. Defraigne, *Royal Observatory of Belgium* C. Courde, J. Chabé, *Observatoire de Côte d'Azur*

Outline

- Introduction
- Theoretical approach
- Statistical analysis
- First theoretical results

Introduction

- Atomic clocks are a good tool to search a uniform-in-time drifts of fundamental constants
 - => Such transient in time changes of fundamental constants can be induced by Dark Matter objects

=> Network of correlated atomic clocks (GPS) can be used to search DM objects

$$\frac{\delta\omega(r,t)}{\omega_c} = \sum_X K_X \frac{\delta X(r,t)}{X}$$

- Scalar interaction (φ) between DM and atoms of clocks induces shifts in effective values of fundamental constants:
 - fine structure constant α ,
 - the ratio of the light quark mass to the quantum chromodynamics m_q/Λ_{QCD} ,
 - the electron and proton (fermion) masses $m_{e}\,and\,m_{p}$

$$\frac{\delta X(r,t)}{X} = \Gamma_X \varphi^2(r,t)$$

Model

- 24 Galileo satellites with atomic clocks (H-maser) on boards
- 3 months of data
- Clocks give time by counting number of oscillations and multiplying them by the period
- Experimentally relevant quantity is the total phase accumulated by the quantum oscillator $\varphi_0(t) = \int_0^t \omega_0 dt'$
- Interaction with DW leads to a shift in the oscillator frequency:

$$\varphi(t) = \int_0^t (\omega_0 + \delta \omega(t')) dt'$$

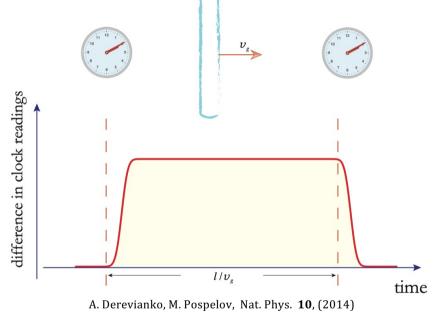
Comparison signal from two clocks

Before DW arrival, clocks are synchronized => $\Delta \varphi(t) = 0$

DW passing the first clock introduces a phase difference $\Delta \varphi(t) \sim d/v_g$

DW propagates through the clock network with v_g:

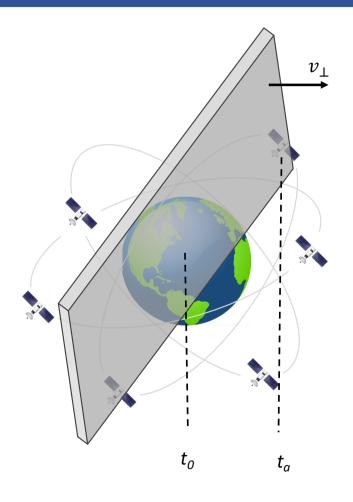
$$\Delta \varphi(t) \sim \int_{-\infty}^{t} \left(f\left(t' - \frac{l}{v_g}\right) - f(t') \right) dt' = \omega_0 \Delta t(t)$$



- After passing the second clock, the phase difference vanishes

=> Monitoring correlated time difference $\Delta t(t)$ between two clocks, one can search for DM

Signal simulation



DM signal:
$$\varphi(z, V, d) = V \cdot \tanh\left(\frac{z}{2d}\right)$$

 $V^2 = \frac{3}{2} v_{gal} \Im d\rho_{DM}$ $\varphi = -v$

The distance between DW and an aircraft *a*:

$$z_a(t, v_\perp, t_0) = -v_\perp(t - t_0) - \boldsymbol{r}_a(t)\boldsymbol{n}_\perp$$

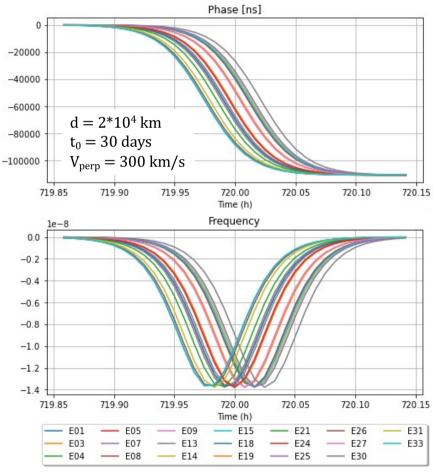
Signal from DW: $S_a(t) = \int_{-\infty}^t \Gamma_a^{\text{eff}}(\varphi^2(z_a(t', v_\perp, t_0), V, d) - V^2)dt'$

The first-order difference:

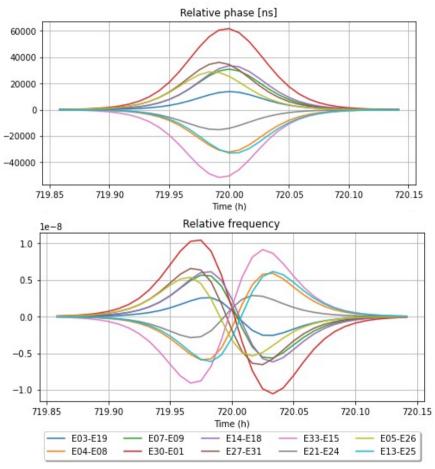
$$\Delta S(t) = S(t) - S(t - \Delta t) = \int_{t - \Delta t}^{t} \Gamma_{a}^{\text{eff}}(\varphi^{2}(z_{a}(t', v_{\perp}, t_{0}), V, d) - V^{2})dt'$$

Signal simulation

• Thin DW (d < 10^4 km)

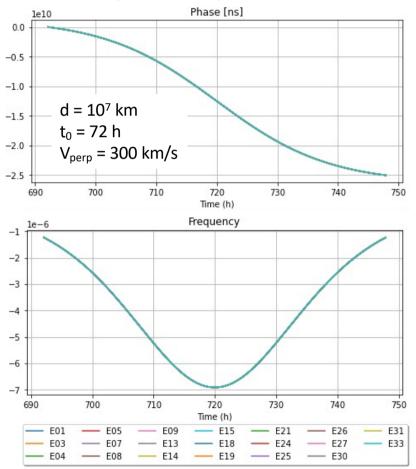


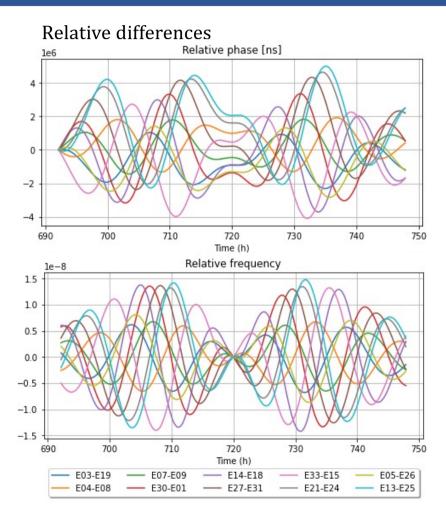
Relative differences



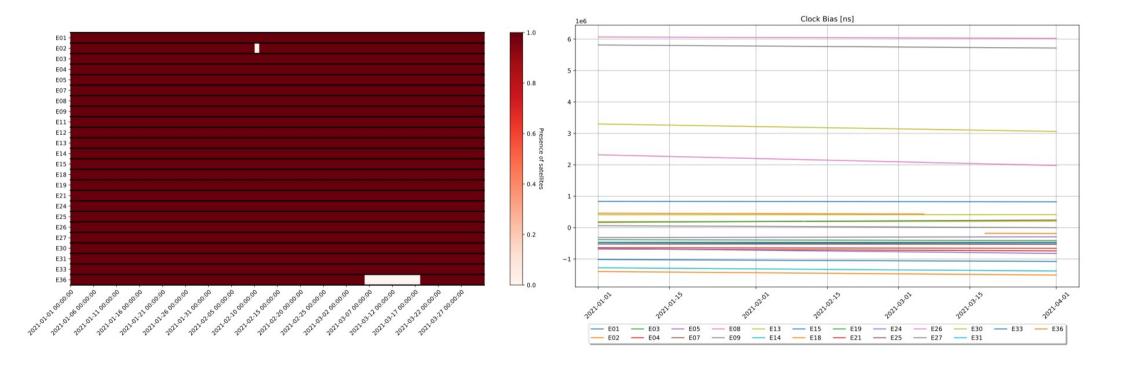
Signal simulation

• Thick DW ($d > 10^4$ km)





Presence of data

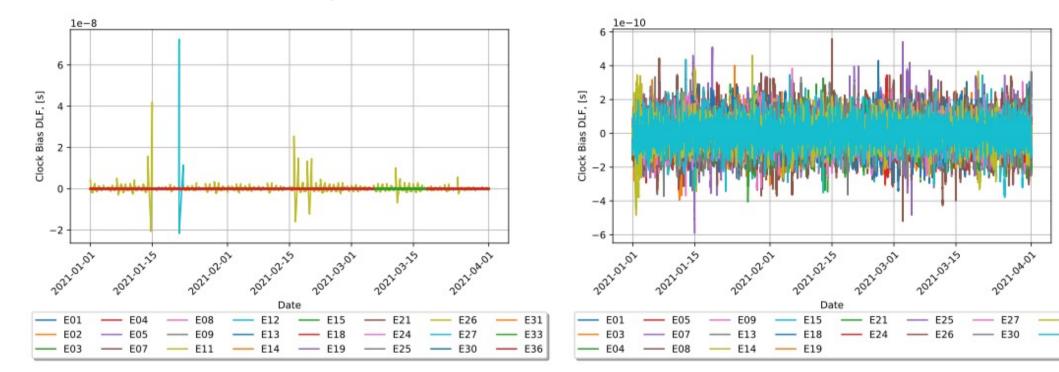


- 2 satellites have missing data
- => We removed them from the analysis

Different linear drift for each clocks=> should be removed

Pre-process

From Clock Bias, we remove daily linear fit



2 clocks have problems:

- E11 works with Rb clock,
- E12 has a big jump

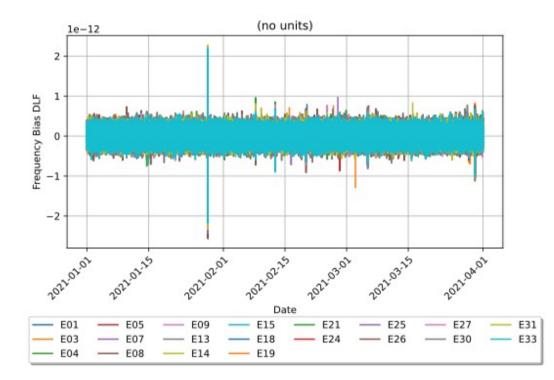
Clock bias with removed daily linear fit after removing E02, E11, E12, E36 clocks

E31

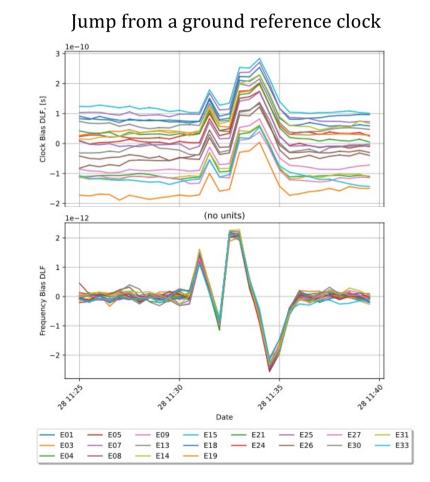
E33

Pre-process

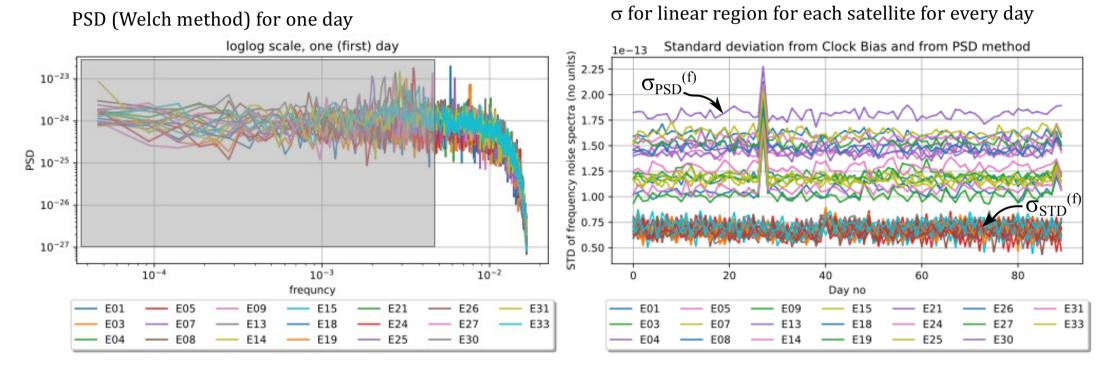
From Clock Bias, we also can calculate a derivative, which corresponds to frequency



Frequency bias with removed daily linear fit after removing E02, E11, E12, E36 clocks



Noise characterization



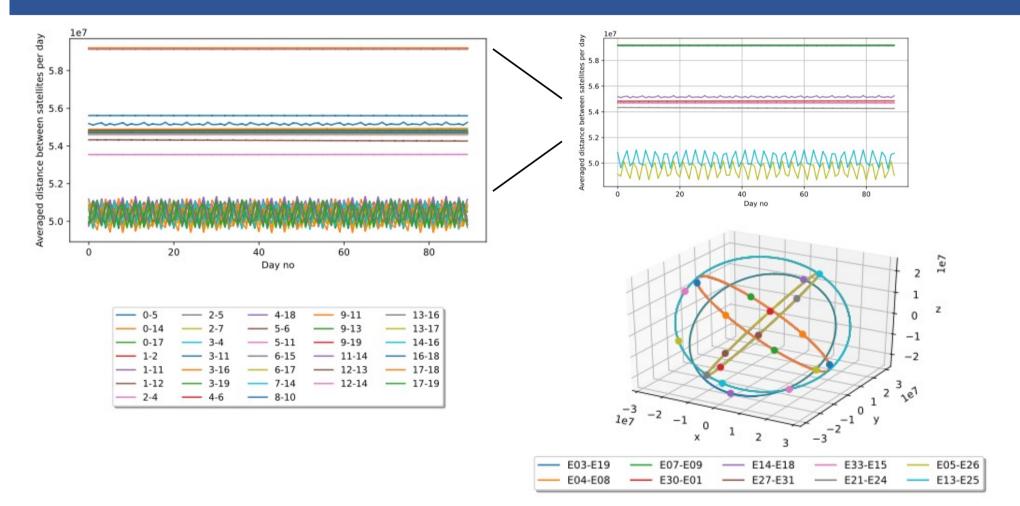
=> white noise

$$\sigma_{\rm PSD} = \sqrt{\frac{b_0 \cdot f_s}{2}} \qquad f_s = 1/30$$

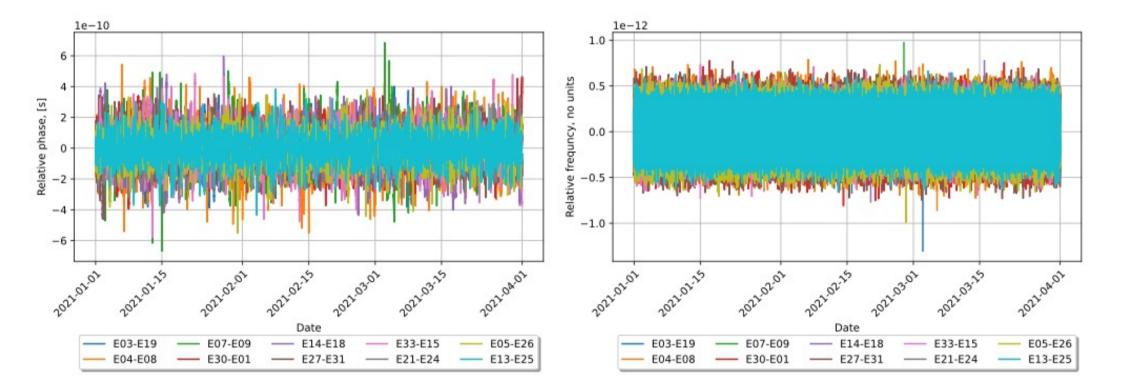
Comparison with sigma from clock files

$$\sigma_{\rm STD}^{(f)} = \frac{\sigma_{\rm STD}^{(t)}}{\Delta T}$$

Choosing independent pairs



Relative phase and frequency differences



Data Analysis: frequentist approach

1. Posterior probability
$$p \equiv p(D_t | \varphi(\zeta)) = Cp(\zeta) \exp\left(-\frac{1}{2}[d-s]^T C^{-1}[d-s]\right)$$

 ζ defines DW parameters: incident direction, velocity, encounter time

C is the covariance matrix

d – data s $\sim hs(t_{0j}, d_j, \mathbf{v}_{perp,j})$ – simulated signal

2. We work with independent pairs

$$d_{i} = d_{a} - d_{b}$$

$$s_{i} = s_{a} - s_{b}$$

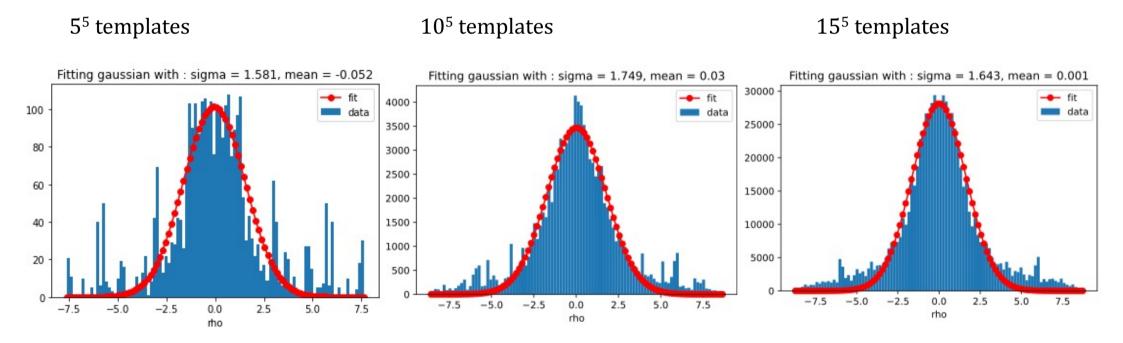
$$\Rightarrow C_{ii} = \sqrt{\sigma_{PSD,a}^{2} + \sigma_{PSD,b}^{2}}, i \text{ is pair of clocks } a \text{ and } b$$

3. Posterior on the signal amplitude (Dt: templates with $\theta, \, \phi, \, v_{\text{perp}}, \, d, \, t_0)$

$$h_{\zeta} = \frac{d^{T} \boldsymbol{C}^{-1} \boldsymbol{s}(\zeta)}{\boldsymbol{s}^{T}(\zeta) \boldsymbol{C}^{-1} \boldsymbol{s}(\zeta)} = \frac{\sum_{i,k}^{Ncp} \sum_{j,l}^{D_{t}} d_{j}^{i} (\boldsymbol{C}^{-1})_{j} \boldsymbol{s}_{l}^{k}(\zeta)}{\sum_{i,k}^{Ncp} \sum_{j,l}^{D_{t}} s_{j}^{i}(\zeta) d_{j}^{i} (\boldsymbol{C}^{-1})_{j} \boldsymbol{s}_{l}^{k}(\zeta)} \qquad \sigma_{h_{\zeta}}^{2} = \frac{1}{\boldsymbol{s}^{T}(\zeta) \boldsymbol{C}^{-1} \boldsymbol{s}(\zeta)}$$
Signal to Noise Ratio SNR = $\frac{h_{\zeta}}{\sigma_{h_{\zeta}}} = \frac{d^{T} \boldsymbol{C}^{-1} \boldsymbol{\varphi}(\zeta)}{\sqrt{\boldsymbol{\varphi}^{T}(\zeta) \boldsymbol{C}^{-1} \boldsymbol{\varphi}(\zeta)}}$

Data Analysis: frequentist approach

1. Forming templates for 5 parameters: (t₀, d, v, θ , ϕ) => calculation SNR on event free simulated data



=> Gaussian distribution

Still need to be done...

• Estimate a threshold value

$$1 - \left[\operatorname{erf}\left(\frac{\rho_{\operatorname{thresh}}}{\sqrt{2}}\right) \right]^{N_{\operatorname{templates}}} = 0.05$$

- SLR campaign has provide high quality of the clock data with very small residual with respect to daily linear fits .
- In the case of a positive event of DW signal, we will need to exclude the signal from an orbital error. This will be possible by analysing SLR residual. This comparison can be done.

Conclusions

- Our analysis can be applied to any model describing the interaction of the usual Maxwell Lagrangian with scalar fields beyond the Standard Model
- The tangential profile of DM field gives more information about interaction process
- Our model allows to consider thick domain walls which was not considered before

Thank you for your attention!