Pre-supernova Axion-like Particles and Their Detectability

Kanji Mori (森寬治)

Research Institute of Stellar Explosive Phenomena, Fukuoka University

Mori, Takiwaki & Kotake (2021) submitted (arXiv:2107.12661)

Axion-like Particles (ALPs)

- A class of hypothetical pseudo Nambu-Goldstone bosons associated with U(1) symmetries
- Many models

✓QCD axions

- [Wilczek PRL 40 (1978) 279, Weinberg PRL 40 (1978) 223.]
- ✓ String axions [Svrcek & Witten JHEP 2006 51.]

√…

A candidate of dark matter!

Constraints on ALPs

ALPs can couple with photons:

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma}a\tilde{F}^{\mu\nu}F_{\mu\nu}$$

- The ALP-photon coupling $g_{a\gamma}$ has been explored experimentally and astrophysically
- ALPs with $m_a \sim 1$ neV are tightly limited by astrophysical γ -rays

ALP Production Process

[e.g. di Lella et al. PRD 62 (2000) 125011.]

Primakoff process

 $\frac{d^2 n_a}{dt dE} = g_{a\gamma}^2 \frac{T\kappa^2}{32\pi^3} \frac{kp}{e^{\frac{E}{T}} - 1} \left(\frac{((k+p)^2 + \kappa^2)((k-p)^2 + \kappa^2)}{4kp\kappa^2} \ln\left(\frac{(k+p)^2 + \kappa^2}{(k-p)^2 + \kappa^2}\right) - \frac{(k^2 - p^2)^2}{4kp\kappa^2} \ln\left(\frac{(k+p)^2}{(k-p)^2}\right) - 1 \right)$

 $Q_a = \int_{m_a}^{\infty} dE_a E_a \frac{d^2 n_a}{dt dE_a}$

k: photon wave number in plasma *p*: ALP momentum

κ: Debye-Hückel scale

ALP emissivity is a steep function of T \rightarrow Hot astrophysical plasma is preferred

Supernova Progenitors

Temperature becomes higher as the star evolves →Massive stars in O- and Si-burning phases as an ALP factory?

Mukhopadhyay et al. ApJ 899 (2020) 153.

There are ~30 SN candidates within ~1 kpc

ALP-photon Conversion by Magnetic Field

[Raffelt & Stodolsky PRD 37 (1988) 1237.]

ALPs are converted into photons by Galactic magnetic field $\rightarrow \gamma$ -ray may be observable $a-\gamma$ conversion prob. with B=1 μ G

Stellar Model

[Joyce et al. ApJ 902 (2020) 63.]

- We adopt parameters for Betelgeuse as a benchmark
- MESA [Paxton et al. ApJS]
- *M*=20*M*_☉
- *d*=168⁺²⁷-15 pc
- *B*=1 μG

γ-ray Spectrum

- 20 M_☉ model just before
 core-collapse
- d=168 pc (Betelgeuse)
- The peak is at ~1-5 MeV
- →may be observed by MeV
 γ-ray telescopes
- Spectral irregularity by $P_{a\gamma}$

γ-ray Flux and its Observability

- γ -ray flux increases as a function of time
- γ -ray may be observable
- →ToO observations following pre-SN neutrino alarms are desirable

Summary

- We calculated ALP emission from an SN progenitor
- γ -ray from a nearby star (e.g. Betelgeuse) may be observable by MeV γ -ray telescopes
- γ -ray observations following pre-SN neutrino alarms may provide an independent
 constraint on ultralight ALPs

