Axion clouds may survive the perturbative tidal interaction over the early inspiral phase of black hole binaries

Takuya Takahashi (Kyoto University) Based on : T. Takahashi & T. Tanaka 2106.08836[gr-qc]

2021/9/28 VLDM2021 workshop

Introduction

Axion & Astrophysics

The best-motivated extension of the Standard Model

(A.Arvanitaki et. al., String Axiverse, arXiv:0905.4720)

Rotating BHs and Axion

Superradiant instability

- This system admits quasi-bound solutions
- Energy and angular momentum extraction from BH

 $10^{-20} \sim 10^{-10} \text{eV}$

BHs and GWs observation has the potential of probing axion

Axion Cloud

Axion Clouds in Binary systems

D.Baumann et al, 1912.04932

- Can we test axion with GW from binary coalescence?
- Does the axion cloud disappear due to binary's tidal interaction?

We made the exhaustive study of cloud depletion in a wide parameter region numerically for equal mass binaries.

Dynamics of the Axion Clouds

 Ω_H

J

BH mass M

axion mass μ

|311>

l = 1

 $\begin{array}{c} |211\rangle \\ \hline m = 1 \\ m = 0 \\ |21-1\rangle \\ m = -1 \end{array}$

 $|322\rangle$

l = 2

Isolated Axion Clouds

$$(g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} - \mu^{2}) \phi = 0$$

 \downarrow non-relativistic approx. $M\mu \ll 1$
 $i \frac{\partial}{\partial t} \psi = \left[-\frac{1}{2\mu} \nabla^{2} - \frac{M\mu}{r} \right] \psi$
This is formally equivalent
to the hydrogen atom in QM.
 $\omega_{nlm} = (\omega_{R})_{nlm} + i(\omega_{I})_{nlm}$
Energy Growth(+)/Decay(-)
 $(\omega_{I})_{nlm} \propto (m\Omega_{H} - \mu)(M\mu)^{4l+5}$ (S.Detweiler, 1980)
 $l = 0$ $l = 1$ $l = 0$
Superradiance condition

Is there any chance the Cloud won't disappear?

- We are interested in the case $M\mu \gtrsim 0.1$.
- Resonance freq. is determined by the energy gap.
- We need to calculate the eigenfrequencies numerically.

Parameter : coupling and BH spin $(M\mu, a/M)$

<u>Story</u>

Transition destination

Initially, axions occupy the fastest growing mode.

$$|n_0 l_0 m_0\rangle \rightarrow |?>$$

• quadruplolar tidal perturbation V_*

Selection rules

e.g.) non-rela approxi. co-rot. : $|211\rangle \rightarrow |21-1\rangle$ $|322\rangle \rightarrow |320\rangle$

② How much fraction of the cloud will disappear If transition is adiabatic, all axions are transferred to another mode.

 $M_{cl} \simeq M_0 \exp\left(\omega_I t_m\right)$ Decay width Time to merger

Transition destination

Example) a/M = 0.998, l = m = 2 is the fastest

Transition destination

Parameter ($M\mu$, a/M) plane

Transition Map

l = 1

Transition destinations are the same the non-rela approx.

i.e. co-rot. $|211\rangle \rightarrow |21-1\rangle$, conter-rot. $|211\rangle \rightarrow |31-1\rangle$

l = 2

Cloud depletion

<u>Summary</u>

We studied the axion cloud depletion due to binary's tidal interaction in a wide parameter region including the cloud is in the relativistic regime.

assuming • only leading quadrupolar tidal perturbation is at worktransition is adiabatic

This is the first step!

Ongoing work

- Effect of higher multipole moment of tidal potential
- Study this system in more detail

Backup

Figure 1. Energy spectra of bound states with l = 1, 2 and 3 relevant in discussing the transitions for a/M=0.998. Here, the vertical lines in the respective panels show the range of $M\mu$ beyond which $|nlm\rangle = |211\rangle, |322\rangle, |433\rangle$ are not the fastest growing modes of interest.