An analytic model for the sub-galactic matter power spectrum in fuzzy dark matter halos

Workshop on Very Light Dark Matter (2021/09/28) Hiroki Kawai (University of Tokyo)

arXiv: 2109.04704 Collaborators : Masamune Oguri, Alfred Amruth, Tom Broadhurst, and Jeremy Lim

Contents

- 1. Introduction
 - Cold dark matter and Small scale problems
 - What is fuzzy dark matter?
 - Property of FDM halos
 - Sub-galactic matter power spectrum obtained by strong gravitational lensing
- 2. Analytic model for the sub-galactic matter power spectrum in FDM halos
- 3. Parameter dependence of our model
- 4. Constraints on FDM mass

CDM and Small Scale Problems

Standard cosmology : Cold Dark Matter (CDM)

- → succeed in explaining the large scale structure
- → However, there are several small scale problems (< 1 Mpc)
 - Core-cusp problem
 - Missing-satellite problem
 - Diversity problem
 - Too-big-to-fail problem

Springel+ 2006

Other dark matter model?

What is Fuzzy Dark Matter?

Fuzzy Dark Matter (FDM) = a scalar particle coupled to gravitational field without self-interaction whose mass is around $m \sim 10^{-22} \text{ eV}$

- → de Broglie wavelength $\lambda \sim \mathcal{O}(1)$ kpc
- → Wave nature can be seen on cosmological scale within $\mathcal{O}(1)$ kpc.
- \rightarrow Missing satellite problem can be solved.

On large scale, FDM behaves the same way as CDM.

→ Succeed in generating the large scale structure

Gravitational Collapse II Uncertainty Principle

The property of FDM halos

FDM simulation reveals the nature of FDM halos.

Two distinct features in FDM halos :

Granular structures & Soliton core

 \rightarrow Core-cusp problem can be solved.

Granular structures originate from the wave nature of FDM.

→ Do these small structures really exist?

Schive+ 2016

Interference pattern / Granular structure

Strong lens systems

ALMA (ESO,NRAO,NAOJ)

Sub-galactic matter power spectrum estimation by strong lens systems

Bayer et.al.(2018) obtained the upper bound of sub-galactic matter power spectrum from the strong lens system SDSS J0252+0039.

Motivation of our study

Can we constrain the granular structures in FDM halos by the sub-galactic matter power spectrum?

We make an analytic model of the power spectrum, and compare it with the observational constraints obtained by the strong lens system.

Sub-galactic matter power spectrum in FDM halos <u>FDM-only case</u>

Each clump Halo profile : $\rho_{\rm h}(\mathbf{r})$ (smooth) Mass : $M_{\rm c}(\mathbf{r}') = \rho_{\rm h}(\mathbf{r}')V_{\rm c}$ Volume : $V_{\rm c} = \frac{4}{3}\pi \left(\frac{\lambda_{\rm c}}{2}\right)^3$ distribute randomly $\lambda_{\rm c}/2$ \vec{r} Density profile inside each clump $\rho_{\rm c}(\boldsymbol{r} ; \boldsymbol{r}') = M_{\rm c}(\boldsymbol{r}')u(\boldsymbol{r} - \boldsymbol{r}')$ $\langle n(\mathbf{r}) \rangle = \frac{1}{V}$ de Broglie wavelength Normalized mass density function Each clump FDM halo FDM profile : $\rho_{\rm f}(\mathbf{r}) = \int_{U} d^3 r' \rho_{\rm c}(\mathbf{r} ; \mathbf{r}') n(\mathbf{r}')$ **Superposition** of clumps

Sub-galactic matter power spectrum

Projected density field

$$\Sigma_{\rm f}(\boldsymbol{x}) \equiv \int_Z dz \ \rho_{\rm f}(\boldsymbol{r})$$

Matter fluctuation around the position \boldsymbol{x}

The sub-galactic matter power spectrum is

$$\left\langle \widetilde{\delta}_{k} \ \widetilde{\delta}_{k'} \right\rangle \equiv S_{\epsilon} \delta_{k+k',0}^{(2)} P(k)$$

$$P_{f}(k) = \frac{V_{c}}{r_{h}(x)} | \widetilde{u}_{k} |^{2}$$
We define an effective radius :
$$r_{h}(x) \equiv \frac{\Sigma_{h}^{2}(x)}{\int_{Z} dz \ \rho_{h}^{2}(r)} = \frac{\left(\int_{Z} dz \ \rho_{h}(r)\right)^{2}}{\int_{Z} dz \ \rho_{h}^{2}(r)}$$

Sub-galactic matter power spectrum in FDM halos Include baryon

Baryon profile : smooth function $\rho_{\rm b}(r)$

Total density is

$$\rho(r) = \rho_{\rm f}(r) + \rho_{\rm b}(r)$$

The projected density is

$$\Sigma(x) = \Sigma_{\rm f}(x) + \Sigma_{\rm b}(x)$$
$$\Sigma_{\rm b}(x) \equiv \int_Z dz \ \rho_{\rm b}(r)$$

Independent of granular structures

The sub-galactic matter power spectrum can be obtained by the same calculation.

FDM mass dependence

Damping scale :

 $k \sim 1/\lambda_{\rm c} \propto m$

Plateau region :

$$P(k) \propto \lambda_{\rm c}^3 \propto m^{-3}$$

Larger FDM mass

- → Smaller de Broglie wavelength
- → Larger amount of clumps along the line of sight
- → Matter fluctuation is averaged

Compare with observation

The upper limit of the sub-galactic matter power spectrum is obtained by strong lens system SDSS J0252+0039.

Dimensionless convergence power spectrum :

$$\Delta_{\delta\kappa}^2(k) = 2\pi k^2 \left(\frac{\Sigma(x)}{\Sigma_{\rm cr}}\right)^2 P(k)$$

Current : No constraint on FDM mass Future : Constraints on interesting region

Summary

- 1. We construct the analytic model for the sub-galactic matter power spectrum in FDM halos.
- 2. Since FDM mass dependence on the sub-galactic matter power spectrum is large, it is useful to study FDM model with it.
- 3. Current observation gives no constraint on FDM mass, but future observation can constrain on the interesting mass range.