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No Global Symmetries
One big idea behind multiple things that I will discuss in this talk is that 
consistent theories of quantum gravity have no global symmetries. At 
the UV cutoff scale, not even approximate global symmetries.

Surprisingly wide range of applications!  e.g.: (time for only a subset today)

• Existence of particles in all representations of gauge group

• Weak Gravity Conjecture

• Chern-Simons terms and axions

• Existence of “twist” strings (ZN strings, Alice strings, …)

(Wheeler; Hawking; Zeldovich; Banks, 
Dixon; Banks, Seiberg; Harlow, Ooguri;

rapidly growing list of others….)



Example: Symmetries in Free U(1) Gauge Theory
In free Maxwell theory, we have no electric or magnetic sources, so

dF = 0 Closed 2-form current
⟹ Global (d-3)—form symmetry

d(⋆F) = 0 Closed (d−2)-form current
⟹ Global 1-form symmetry

The quantization of fluxes means that these are both U(1) symmetries.
In 4d, they are both 1-form global symmetries.

• Electric symmetry, current ★ F, charged objects are Wilson loops.
• Magnetic symmetry, current F, charged objects are ’t Hooft loops.

The symmetries basically count Wilson or ’t Hooft loops.



Complete spectrum of charged particles
⟺ absence of global symmetries

d(⋆F) = J Charged particles break the 1-form 
symmetry’s conservation law 
(while gauging a 0-form symmetry with current J)

Wilson operators can 
end on local operators 
that create charged 
particles.

No longer a topologically 
invariant flux.

Wilson lines can end ⟺ 1-form electric symmetry is explicitly broken.
Generalization to all representations of any compact gauge group: Rudelius, Shao ’20; Heidenreich, McNamara, Montero, MR, Rudelius, Valenzuela ’21
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Moduli and Axions for Gauge Couplings
In string theory, the gauge kinetic function is often a dynamical field:

1
16πi ∫ d2θ τ(x) 𝒲α(x)𝒲α(x)

axion “saxion” 
or scalar 
modulus

τ(x) =
1

2π
θ(x) + 4πiS(x), ⟨S⟩ =

1
g2

Note: I am not 
assuming TeV-
scale SUSY! Just 
compactification-
scale SUSY.



Aspects of Moduli Fields
The limit where , i.e., , lies at infinite distance.  
No global symmetries: cannot send gauge couplings to zero. 
 
(cf. Ooguri/Vafa “Swampland Distance Conjecture”; Arkani-Hamed/Motl/Nicolis/Vafa “Weak Gravity Conjecture”)

g → 0 S → ∞

ℒ ⊃ M2
*∂μ(log S)∂μ(log S) +

M2
*

S2
∂μθ∂μθ

Have in mind Lagrangians like:

(can be more complicated in multi-field cases).



Aspects of Axion Fields
ℒ ⊃ M2

*∂μ(log S)∂μ(log S) +
M2

*

S2
∂μθ∂μθ

Axion decay constant is -dependent, and never zero at finite distance. 
“Fundamental axion”: PQ symmetry is never restored.

S

Axion strings are 
fundamental objects 
(e.g., F-string, 
wrapped D-brane).

decay constant f2



Expectations for Scales
Moduli often have Planck-suppressed interaction strengths. Always 
true of the overall volume modulus.

Moduli masses generically set by SUSY breaking. 
 
Axion decay constant often at Kaluza-Klein scale (for overall volume 
modulus) or string scale (for more generic moduli).  
 
Axion masses are potentially exponentially small (when 
corresponding saxion has Kähler stabilization).



Moduli/Axion Cosmology
Misalignment mechanism: in the 
early universe, displaced from 
minimum.

Coherent oscillation about minimum: 
matter-dominated phase.

Moduli can dominate the universe for a long time, due to their 
very weak interactions.

ΓS ∼
m3

S

8πM2
Pl

⇒ Trh ∼ TBBN if mS ∼ 30 TeV



Moduli Alter Cosmology

If moduli masses are below ~107 GeV, 
their decays reheat the universe below 
the electroweak phase transition.

Don’t expect thermal relic WIMP DM.

Axion DM can begin oscillating during the moduli-dominated 
epoch, then get diluted. Higher decay constants possible!



Lamppost or Principle?
Moduli and axions are ubiquitous in string theory 
compactifications. But is this an accident, or are they 
there for a reason?

1
2

f2(∂θ)2 +
θ

16π2
FμνF̃μν ⇒ ∂μ( f2∂μθ) =

1
16π2

FμνF̃μν

(Heidenreich, McNamara, Montero, MR, 
Rudelius, Valenzuela ’20)



Lamppost or Principle?
Moduli and axions are ubiquitous in string theory 
compactifications. But is this an accident, or are they 
there for a reason?

1
2

f2(∂θ)2 +
θ

16π2
FμνF̃μν ⇒ ∂μ( f2∂μθ) =

1
16π2

FμνF̃μν

instanton number 
density

The axion causes a would-be conserved quantity 
(instanton number) to vanish: integral of a total derivative.

(Heidenreich, McNamara, Montero, MR, 
Rudelius, Valenzuela ’20)



Chern-Weil symmetry
In an abelian gauge theory, if  (no magnetic monopoles), thendF = 0

d(F ∧ F) = dF ∧ F + F ∧ dF = 0,

so  is a conserved 4-form current, and generates a ( )-form symmetry. It 
is broken if magnetic monopoles exist (but a modified current with localized 
addition, , can exist).

F ∧ F d − 5

F ∧ F + dσ ∧ δM

A generalization is true in nonabelian gauge theories:

d tr(F ∧ F) = tr(dF ∧ F + F ∧ dF)
= tr((dF + [A, F]) ∧ F + F ∧ (dF + [A, F]))
= tr(dAF ∧ F + F ∧ dAF) = 0

We call this “Chern-Weil symmetry.”  
Instanton number is an invariant charge associated with a field configuration!



Axions as Gauge Fields
The job of the axion in quantum gravity is to eliminate a 
generalized (“(-1)-form Chern-Weil”) global symmetry by 
gauging it. 
 
Indeed, axions in string theory often just are zero modes 
of higher dimensional gauge fields.

τ(x) =
1

2π
θ(x) + 4πiS(x), θ = ∫Σp

Cp, S ∼ Vol(Σp)

θFμνF̃μν from ∫ Cp ∧ F ∧ FChern-Simons:

(Heidenreich, McNamara, Montero, MR, 
Rudelius, Valenzuela ’20)
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New Origin of Axion Potential

It is well known that for axion coupling to non-Abelian gauge group, 
instantons generate a potential for the axion. 

Yet for axion coupling to Abelian gauge fields, the axion could still 
acquire a potential through loops of magnetic monopoles.                                        
(Fan, Fraser, MR, Stout 2021, just published in Phys.Rev.Lett.)

Existence of magnetic monopoles: “completeness hypothesis”           
Polchinski 2003



Monopole Refresher: ’t Hooft-Polyakov
 symmetry broken by an adjoint vev: classical 

solution of ’t Hooft-Polyakov (’t H-P) monopole.

                                                       

                                                       

                                                        
 
 
The solution has 4 zero modes (collective coordinates): 3 translations, 1 U(1) 
(large gauge transformation, not vanishing at infinity).

review: Shifman, Advanced Topics in Quantum Field Theory, Chapter 4

SU(2) → U(1)

ϕa = v ̂r aH(r), Aa
i = ϵaij 1

r
̂r jF(r)

r → ∞ : H(r) → 1, F(r) → 1

r → 0 : H(r) → 0, F(r) → 0
Shifman



Possible charged states: not only magnetic monopoles, but also dyons 
(particles with both magnetic and electric charges). 

E.g., in ’t H-P case, a residual unbroken global  rotation could be realized 
by a compact real scalar. In 4d, this is described by QM of a particle living on a 
circle,  (dyonic collective coordinate). This has a spectrum labelled 
by integers. The ground state is the magnetic monopole (with no electric 
charge) and the excited states are dyons.  

U(1)

σ ≅ σ + 2π

0e

{Dyon tower

⋯

ground state m2
0 = m2

M

m2
n = m2

M + m2
Δn2

±e

±2e

±3e

excited states



Witten Effect

Given   (  and : unit of electric charge) 

and a point magnetic monopole (no electric charge when ) at the 
origin, the Maxwell equations are modified: 

e2θ
8π2

F ∧ F =
e2θ

16π2
FμνF̃μν θ = a/fa e

θ = 0

Magnetic Gauss’ law: ,  : unit of magnetic charge;  

due to Dirac quantization condition;

∇ ⋅ B =
gm

4π
δ(r) gm egm = 2π

Electric Gauss’ law:  ∇ ⋅ E +
e2

4π2
θ (∇ ⋅ B) = 0 ⇒

QE

e
= −

θ
2π

A monopole obtains an effective electric charge in the presence of an axion 
background! 

Witten, 1979



In general, the dyon electric charge is shifted to be 

QE

e
= n −

θ
2π

, n = 0, ± 1, ± 2,⋯

The corresponding energy spectrum will be modified as well! 

L =
1
2

·σ2 +
θ

2π
·σ

Conjugate momentum:   Πσ = ·σ +
θ

2π

: dyonic collective coordinateσ

Hamiltonian:  

H =
1
2 (Πσ −

θ
2π )

2

⇒ En =
1
2 (n −

θ
2π )

2

1
2 (−i∂σ −

θ
2π )

2

ψn = Enψn



The corresponding energy spectrum 

m2
n − m2

M = m2
Δ (n −

θ
2π )

2

ground state monopole mass at θ = 0

Integrating out these states  vacuum potential for the axion ! ⇒ θ

periodicity through “monodromy” or 
rearrangement of the eigenstates: 

n → n + 1, θ → θ + 2π



Note: different from the axion potential generated by monopole and anti-
monopole plasma! Fischler, Preskill 1983; Kawasaki, Takahashi, Yamada 2015; Nomura, 
Rajendran, Sanches 2015; … 

A plasma of monopoles and anti-monopoles could be generated through the 
Kibble-Zurek mechanism in the early Universe. 

Here we talk about the axion potential from the virtual effects of monopole 
(dyon) loops. 



Our calculation can be carried out from two viewpoints:

1. Integrate out the dyons to get a Coleman-Weinberg potential for axion.

2. Do the path integral over all monopole loops. 

Related by Poisson resummation

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x� x0)2 �m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
�

✓
n�

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�
m2

m⌧

2
�

m2
�⌧

2

✓
n�

✓

2⇡

◆2
!
.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m

2
�⌧(n� ✓

2⇡ )
2

=
X

`2Z

s
2⇡

m2
�⌧

exp

✓
�
2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�
m2

m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m

2
m

32⇡4`3
e�2⇡`mm/m� cos(`✓)⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

We can interpret ` in this sum as the winding number
of � around the loop. If we take the relativistic comple-
tion of the action (2) with the dyon collective coordinate
� treated as another (compact) spatial direction in which
the monopole propagates, analogous to the DBI action:
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 in ’t H-P model: same 
instanton action as in YM theory!
e−Sinst ∼ e−8π2/g2
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In a hidden gauged  sector with an axion and monopoles: both axion and 
monopole contribute to DM 

U(1)

dark gauge coupling
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Conclusions

Thank You!

Quantum gravity theories have ubiquitous (s)axion fields coupled to gauge 
fields.

Moduli and axions can lead to extended, early matter domination before BBN. 
Moduli dominance and decay alter any dark matter relic density calculation.

Axions have a job to do in quantum gravity: eliminating a global Chern-Weil 
(instanton number) symmetry by gauging it.

Fundamental axions need not be ordinary pseudo-Nambu-Goldstone bosons: 
no point in field space where Peccei-Quinn is restored.

The localized worldline fields on magnetic monopoles lead to axion potentials.

Minimum mass for axion coupled to photons? Depends on subtleties about 
fermion mass dependence. Work in progress (w/ Fan, Fraser, Stout, Telem)


