On the quantum origin of a small positive cosmological constant

Saurya Das

University of Lethbridge

September 29, 2021

Saurya Das September 29, 2021 1/17

Overview

- Dark Matter and Dark Energy problem
- \bigcirc Friedmann equation \leftarrow Raychaudhuri equation
- \bigcirc Quantum Friedmann equation \leftarrow Quantum Raychaudhuri equation
- 4 Dark Matter and Λ from a Bose-Einstein Condensate
- 5 Potential origin of a small positive Cosmological constant

Dark Matter, Dark Energy

Luminosity distance
$$d_L(\Omega_{\Lambda}, \Omega_M, z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz}{\sqrt{\underbrace{\Omega_{\Lambda}}_{0.7} + \underbrace{\Omega_M}_{0.3} (1+z)^3}}$$

$$\Omega_{\Lambda} = rac{
ho_{\Lambda}}{
ho_{crit}} \; , \; \; \Omega_{M} = rac{
ho_{M}}{
ho_{crit}}$$

3/17

Questions

- What constitutes Dark Matter?
- What constitutes Dark Energy/Λ?
- Why is Λ positive?
- Why is Λ tiny, about $10^{-123}\ell_{Pl}^{-2}$ where ℓ_{Pl} is the Planck length? $(\rho = \int_0^{k_{max}} dk \, k^2 \sqrt{k^2 + m^2} \approx k_{max}^4 > 10^{50} \, \rho_{\Lambda})$
- Currently $ho_{DM} pprox \underbrace{\rho_{\Lambda}}_{\frac{\Lambda c^2}{4\pi G}} pprox \underbrace{\rho_{crit}}_{\frac{3H_0^2}{8\pi G}} pprox 10^{-26} \ kg \ m^{-3}$

Why? The 'coincidence problem'

4 / 17

Friedmann equations

Spatially flat FLRW Universe

$$\begin{split} ds^2 &= -dt^2 + a(t)^2 \left[dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2) \right] \text{ [a = scale factor = 1 Now]} \\ & \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p \right) \\ & H^2 = \left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G \rho}{3} \ \rightarrow \ d_L = (1+z) \int_0^z \frac{dz'}{H(z')} \\ & \dot{\rho} + 3H \left(p + \rho \right) = 0 \end{split}$$

Raychaudhuri o Friedmann Equation [heta = Expansion]

$$\begin{split} \frac{d\theta}{d\tau} &= -\frac{1}{3}\theta^2 - \sigma_{ab}\sigma^{ab} + \omega_{ab}\omega^{ab} - R_{cd}u^cu^d < 0 \\ \theta &= 3\,\frac{\dot{a}}{a} \;, \;\; R_{cd}u^cu^d \to \frac{4\pi G}{3}(\rho + 3p) \; \text{(Einstein eqns.)} \\ &= \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3p\right) \end{split}$$

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

Raychaudhuri Equation and Singularity Theorems

Velocity field
$$u_a = u_a(x) \Rightarrow \frac{du_{a;b}}{d\tau} = \underbrace{u_{a;b;c}}_{u_{a;b;c}} u^c = \left[u_{a;c;b} + R_{cba}^{d} u_a\right] u^c$$

$$= \left(\underbrace{u_{a;c} u^c}_{=0 \text{ (geod.eqn.)}}\right)_{;b}^{b} - u^c_{;b} u_{a;c} + R_{cba}^{d} u^c u_d = -u^c_{;b} u_{a;c} + R_{cbad}^{d} u^c u^d$$

Symmetric part:
$$\sigma_{ab} = u_{(a;b)} - \frac{1}{3} h_{ab} \theta$$
Anti-symmetric part and trace: $\omega_{ab} = u_{[a;b]}$; $\theta = h^{ab} u_{a;b}$; $h_{ab} = g_{ab} - u_a u_b$

$$Decomposition: u_{a;b} = \frac{1}{3} \theta h_{ab} + \sigma_{ab} + \omega_{ab}$$

$$rac{d heta}{d au} = -rac{1}{3} heta^2 - \sigma_{ab}\sigma^{ab} + \omega_{ab}\omega^{ab} - R_{cd}u^cu^d \ < 0$$
 [Raychaudhuri Equation]

If $\theta_0 = \theta(0) < 0$ (initially converging)

Focus/caustic for $au \leq rac{3}{| heta_0|}$ Geodesics end in finite time! o Spacetimes are singular!

A. K. Raychaudhuri (1955), L. D. Landau, E. M. Lifshitz (c.1959), R. Penrose (1965) S. W. Hawking and R. Penrose (1970)

Saurya Das September 29, 2021

Quantum Raychaudhuri Equation - 1

But: Raychaudhuri Equation/Friedmann Equation are classical

So: Compute quantum corrections and study consequences

$$\frac{d\theta}{d\tau} = -\frac{1}{3}\theta^2 - \sigma_{ab}\sigma^{ab} + \omega_{ab}\omega^{ab} - R_{cd}u^cu^d + \underbrace{Tr[(u_{a;c}u^c)_{;b}]}_{=0}$$

How does this (geodesic equation) change on quantization?

Quantum Raychaudhuri Equation - 2

Classical fluid $(u_a) \to Quantum fluid (\Psi)$ Geodesic equation $\to Klein$ -Gordon equation

$$\begin{bmatrix} \Box + \frac{m^2c^2}{\hbar^2} \end{bmatrix} \Psi = 0$$

$$\Psi(x) = \mathcal{R}(x) \, e^{iS(x)} \, , \, \mathcal{R}, S \in \mathbb{R} \, ,$$

$$k_a = \partial_a S \, , \quad u_a = c \, \frac{dx_a}{d\tau} = \frac{\hbar k_a}{m} \, , \quad \vec{v} = \frac{d\vec{x}}{dt} = -c^2 \frac{\vec{\nabla} S}{\partial^0 S}$$
 Imaginary part of the KG equation: $\partial^a \left(\mathcal{R}^2 \partial_a S\right) = 0$ Real part of the KG equation: $k^2 = \frac{(mc)^2}{\hbar^2} + \frac{\Box \mathcal{R}}{\mathcal{R}}$
$$u_{;a}^b u^a = \frac{\hbar^2}{m^2} \left(\frac{\Box \mathcal{R}}{\mathcal{R}}\right)^{;b} \neq 0 \quad \text{(i.e. geodesic equation + Quantum potential } V_Q = \frac{\hbar^2}{m^2} \frac{\Box \mathcal{R}}{\mathcal{R}}$$

Quantal trajectories are not geodesics!

Quantum Raychaudhuri equation

$$rac{d heta}{d au} = -rac{1}{3} \; heta^2 - \sigma_{ab}\sigma^{ab} - R_{cd}u^cu^d + rac{\hbar^2}{m^2}h^{ab}\left(rac{\square \mathcal{R}}{\mathcal{R}}
ight)_{;a;b} \leftarrow {}_{Quantum \; Correction \; \mathcal{O}(\hbar^2)}$$

S. Das, Phys. Rev. **D89** (2014) 084068 [arXiv/1311.6539]

Quantum Raychaudhuri Equation and <u>no</u> Singularity Theorems

No-crossing of quantal trajectories

$$\vec{v} = \frac{d\vec{x}}{dt} = -c^2 \frac{\vec{\nabla}S}{\partial^0 S}$$

- No focusing, no conjugate points, geodesics go on forever
- No singularities! (all because of \hbar)

<ロト <回 > < 亘 > < 亘 > く 亘 > り < @

Quantum Raychaudhuri — Quantum Friedmann Equation

FLRW Universe:
$$ds^2 = -dt^2 + a(t)^2 \left[dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right] \text{ [a = scale factor]}$$

$$\theta = 3 \frac{\dot{a}}{a} \; , \quad R_{cd} u^c u^d \to \frac{4\pi G}{3} (\rho + 3p)$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p \right) + \underbrace{\frac{\hbar^2}{3m^2} h^{ab} \left(\frac{\square \mathcal{R}}{\mathcal{R}} \right)_{;a;b}}_{\land \rho}$$

$$\Lambda_Q = rac{\hbar^2}{m^2} h^{ab} \; \left(rac{\square \mathcal{R}}{\mathcal{R}}
ight)_{;a;b} \; = \;$$
 Wavefunction-dependent Quantum correction

Consequences

• No crossing (e.g. at the Big bang)

S. Das, IJMPD 23, No. 12, 1442017 (2014) [arXiv/1405.4011]

Saurya Das September 29, 2021

Bose-Einstein Condensate (BEC) as Dark Matter - 1

$$\begin{split} \frac{\ddot{a}}{a} &= -\frac{4\pi G}{3} \left(\rho + 3p \right) + \underbrace{\frac{\hbar^2}{3m^2} h^{ab} \left(\frac{\square \mathcal{R}}{\mathcal{R}} \right)_{:a;b}}_{\stackrel{\Lambda_Q}{3}} \\ \Psi(x) &= \mathcal{R}(x) \, e^{iS(x)} = \mathsf{BEC} \; \mathsf{wavefunction?} \end{split}$$

Pros:

- Cold
- Dark
- Light bosons as DM \Rightarrow no small scale structure
- Macroscopic Quantum state
- BEC \Rightarrow DE (\approx DM/ Λ) via its (repulsive) Quantum Potential
- Few assumptions and free parameters

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

Saurya Das

Bose-Einstein Condensate (BEC) as Dark Matter - 2

Is the critical temperature (below which a BEC forms) high enough?

Critical temperature =
$$T_c$$

Universe temperature = $T(a)$
Boson mass = $m \ eV/c^2$
 $\rho_{DM} = 0.25 \ \rho_{crit}/a^3$
No. density = $\frac{N}{V} = 0.25 \ \frac{\rho_{crit}}{m \ a^3}$

$$T_c(a) = \frac{\hbar c}{k_B} \left(\frac{(N/V) \pi^2}{\eta \zeta(3)} \right)^{1/3} = \frac{\hbar c}{k_B} \left(\frac{(0.25 \, \rho_{crit}/ma^3) \, \pi^2}{\eta \zeta(3)} \right)^{1/3} = \frac{4.9}{m^{1/3} \, a} \, K$$

$$T(a) = \frac{3.7}{a} K$$
, $a = \text{scale factor}$

$$T(a) < T_c(a) \; orall a \;
ightarrow \; m <$$
 6 eV/ $c^2 \; \Rightarrow$ BEC forms in the early universe

BEC density = DM density

Saurya Das September 29, 2021 12 / 17

Quantum Potential of BEC

 $BEC \Rightarrow \Psi \Rightarrow Quantum \ potential!$

Quantize

Macroscopic BEC wavefunction
$$\Psi=rac{R_0}{a^{3/2}}\,e^{-r^2/\sigma^2}=\mathcal{R}(x)$$
 $ho_{DM}=|\Psi|^2\proptorac{1}{a^3}\,,\,\,\int dV|\Psi|^2=N$ $rac{\ddot{a}}{a}=-rac{4\pi\,G\,
ho_{crit}}{3}+rac{\Lambda_Q}{3}$

$$\Lambda_Q = \frac{\hbar^2}{m^2 c^2} h^{ab} \left(\frac{\square \mathcal{R}}{\mathcal{R}}\right)_{;a;b} = 24 \left(\frac{\hbar}{mc}\right)^2 \frac{1}{\sigma^4} = \text{constant!}$$

S. Das, R. K. Bhaduri, Class. Quant. Grav. 32 105003 (2015) [arXiv:1411.0753] S. Das, R. K. Bhaduri, Phys. News (special S. N. Bose anniversary issue) arXiv:1808.10505

(ロ) (型) (型) (型) (型) (型) (の)

13 / 17

BEC Wavefunction Ψ - 1 (from the Newtonian limit)

Newtonian limit, $R_{space} = 0, R_{spacetime} = 10^{-123} \, \ell_{Pl}^{-2}$

$$m\ddot{r} = -\frac{GMm}{r^2} = -\frac{G(\frac{4}{3}\pi r^3 \epsilon \rho_{crit})m}{r^2} \; , \quad r = r_0 \; a(t) \; , \; \epsilon \approx 0.25$$
 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \epsilon \rho_{crit} = -\omega^2$ Raychaudhuri Equation

BEC in a harmonic trap for $t \ll H_0^{-1}$ (14 Gyr)

Quantize
$$\rightarrow \Psi = R(a) e^{-\frac{m\omega r^2}{2\hbar}} = R(a) e^{-\frac{m(4\pi G \epsilon \rho_{crit}/3)^{1/2} r^2}{2\hbar}} = \frac{R_0}{a^{3/2}} e^{-\frac{r^2}{\sigma^2}}$$

$$\sigma^2 = \frac{2\hbar}{m(4\pi G \epsilon \rho_{crit}/3)^{1/2}}$$

Saurya Das September 29, 2021

BEC Wavefunction Ψ - 2

$$a(t)=a_0+a_1(t)={
m constant}+{
m slowly\ varying}$$
 $\Psi=\Psi_0+\Psi_1={
m time-indep.}+{
m slowly\ varying}$ $\mathcal{R}=rac{R_0}{a^{3/2}}\,e^{-(r^2/\sigma)^2}=rac{R_0}{a_0^{3/2}}-\left(rac{3R_0}{2\,a_0^{5/2}}
ight)\,a_1\,e^{-(r/\sigma)^2}$ $={
m time-indep.}+{
m slowly\ varying}$ $\Lambda_Q=\Lambda_Q^{(0)}+\Lambda_Q^{(1)}={
m constant}+{
m slowly\ varying}$ $\frac{{
m constant}}{a_0^{3/2}}$ (Matter/radiation, $n=m_0$ and $n=0$

How slow is slow?
$$(\frac{\partial 1}{\partial 0}|_{t_1} \ll 1)$$

$$a(t) \propto (t-t_0)^{rac{2}{3(1+w)}}$$
 (Matter/radiation. $p=w
ho,\ w=0,rac{1}{3}$) $a(t)=a_0e^{H_0\,t}$ (de Sitter. $p=-
ho,\ w=-1$)

$$\Delta t \equiv t - t_1 \ll t_1 - t_0$$
 (Matter/radiation)

$$\Delta t \equiv t - t_1 \ll H_0^{-1} \simeq 16 \; \textit{Gyr} \quad \textit{(de Sitter)}$$

Don't go too far in the past!

Saurya Das September 29, 2021 15/17

$\Lambda_{\mathcal{O}}$ from quantum potential

$$\begin{split} \Psi &= R(a)\,e^{-\frac{m(4\pi\,G\,\epsilon\,\rho_{crit}/3)^{1/2}r^2}{2\hbar}} = \frac{R_0}{a^{3/2}}\,e^{-\frac{r^2}{\sigma^2}} = \mathcal{R} \\ \Lambda_Q &= \frac{\hbar^2}{m^2}h^{ab}\,\left(\frac{\square\mathcal{R}}{\mathcal{R}}\right)_{;a;b} = 8\,\pi\,G\epsilon\,\rho_{crit} \quad \textit{(independent of m!)} \\ \rho_\Lambda &= \frac{\Lambda}{4\pi\,G} = 2\,\epsilon\,\rho_{crit} \\ \rho_{DM} &= \epsilon\rho_{crit} \\ \frac{\rho_\Lambda}{\rho_{DM}} &= 2 \end{split}$$

Summary

- What constitutes DM? BEC
- What constitutes DE? Quantum potential of the BEC
- Why is Λ positive?
 Because negative gravitational potential ⇒ positive Quantum Potential
- Why is $\rho_{DM} \approx \rho_{\Lambda} \approx \rho_{crit}$?

 Because |Quantum potential| = |classical potential| for stationary states

Remarks

- We get $\rho_{\Lambda}=3\rho_{DM}$, because (i) $\rho_{DM}\propto 1/a^3, \rho_{\Lambda}\propto \text{ constant}$ (ii) all bosons not in the ground state
- Prediction: ultralight bosons of $m < 6eV/c^2$. gravitons? axions?
- ullet Prediction: Λ has changed in the far past and will change in the future
- Interacting DM and DE model and estimate *m* from data (*M. Sharma*, *S. Sur, SD, arXiv:2102.03032*)
- Full quantization of gravity/spacetime?

Saurya Das September 29, 2021