Simulations of Interactions Between **Ultra-Light Dark Matter** and **Massive Particles**

You-Rong Wang & Richard Easther

VLDM WORKSHOP, KAVLI IPMU, TOKYO 29 SEPTEMBER, 2021 arXiv: 2110.xxxx

Schrödinger-Poisson (SP) Equations

A nonlinear modification to Schrödinger Equation, giving the wavefunction an associated mass density.

ULDM Halos

Globular Clusters

Black Holes

Schrödinger-Poisson Solitons

Can obtain the general radial profile numerically. Know some scaling laws—lighter solitons are *puffier*.

Gravity

Quantum Pressure

Dynamical Friction in Uniform ULDM

Dynamical Friction

...

6

(Dramatisation)

How a heavy object travelling through a distribution of stars, gas, and dark matter can lose momentum and energy.

••

The SAO Encyclopedia of Astronomy https://astronomy.swin.edu.au/cosmos

Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction

Chandrasekhar, S. (1943).

Steady-State ULDM Overdensity in the plane z = 0

$$2\pi \frac{GM}{v^2 \lambda_{\rm dB}} \qquad M(a,b;z) = \sum_{n=0}^{\infty} \frac{a^{(n)} z^n}{b^{(n)} n!} \qquad p^{(q)} \equiv \frac{\Gamma(p+q)}{\Gamma(p)}$$

Simplified Simulation vs. Coulomb Scattering

(Two plots share colour scales as left panel)

Coulumb Scattering Ref.

Simplified Simulation vs. Coulomb Scattering

9

An Infinite Cigar is not stable under its own gravity

Simulated ULDM Density Profile **with Self-Gravity** (Along x-Axis)

Stopping Distances for BH is robust across resolutions and Plummer radii

860

0

Energy Conservation

13

Black Hole Orbiting a Soliton

A Black Hole Orbiting a Soliton

.

Single BH Orbit Decay

(Better time estimates are being performed)

0.08

If deceleration is solely caused by the torque generated by Coulomb D.F

evaluated using (initial) local properties

evaluated using core properties

17

400

Skipping Stones?

Infalling BH's with orbital periods near **resonance** with the soliton's intrinsic breathing modes may experience either facilitation or inhibition of the orbital decay process.

(A stone skipping attempt by Y.W.)

Summary

- Verified the dynamical friction results in literature.
- Direct simulations of nonlinear interactions between a ULDM soliton and a black hole.
- hole.

• N body systems coupled to a mesh-based ULDM simulation.

• Novel dynamics and complex behaviour even with a single black

github.com/Sifyrena/PyUL_NBody Public Release Soon...

For HD Version of This Video: FWPhys.com/BoxSol

MARSDEN FUND TE PŪTEA RANGAHAU A MARSDEN

NEW ZEALAND GRAVITY

ROYAL SOCIETY TE APĀRANGI

Backup Slides

Destructive (π Global Phase Difference)

Soliton Interference

Constructive (o Global Phase Difference)

-

Naive ULDM Dynamical Friction Without Self-Gravity

Work in Particle's co-moving reference frame.

Particle sources a 1/r potential.

Assume the dynamical friction does not affect particle motion.

Axions arrive as a plane wave with uniform velocity and density far away.

Coulomb Scattering Sakurai. Modern Quantum Mechanics. Sec. 7.13

Dynamical Friction in a Fuzzy Dark Matter Universe

Lancaster, L.et al. (2019).

• Assume the interaction was "turned on" a finite time ago.

• Only consider the effects of the Coulomb Scattering model within b = vt.

Moving BH, Stationary ULDM

Source of Interesting Dynamics

Local Causes Lead to Non-Local ULDM Behaviour

Bringing Together Black Holes

Interactions mediated by dark matter might give us a solution to the **Final Parsec Problem**

How do two SMBHs find each other during a galaxy merger and coalesce?

The Final Parsec Problem Milosavljević, M. & Merritt, D. (2003).

> **The LISA Collaboration** LISA Consortium, ESA

