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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data.


▸ Focused on WIMP largely from arguments based on EFT
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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data.


▸ Our discussion will focus on extending the window of 
observability by 12 OOM in mass utilizing collective 
excitations in materials


▸ Why look there? 
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▸ Similar argument as to WIMP based on EFT reasoning


▸ Dark matter abundance is related to SM interactions
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▸ Similar argument as to WIMP based on EFT reasoning


▸ Dark matter abundance is related to SM interactions
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▸ Heavier dark matter: setting relic abundance through 
interactions with Standard Model is challenging (NB: 
exceptions)


▸ At heavier masses, detection through Standard Model 
interactions is (generally) not motivated by abundance
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DETECTABLE INTERACTION RATES

▸ Direct detection searches accordingly focused on weak 
scale 10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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DARK MATTER DETECTION: A FULL COURT PRESS

▸  Abundance may still be set by (thermal) population from 
SM sector
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CROSSING SYMMETRY

▸ Utilize DM Abundance and crossing symmetry as guide 
for interaction rates
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FIG. 5: Sample processes considered in this section to detect DM, �. Top left: DM-nucleus
scattering. Top middle: DM-electron scattering. Top right: DM-nucleus scattering with emission
of a photon. Bottom left: Absorption by an electron of a bosonic DM particle (a vector A0, scalar
�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.

2. Ideas to Probe Low-Mass Dark Matter

Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
transfer is equal to the DM kinetic energy,

Ee 
1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥
�EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠

10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [19–21]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as a
scintillator for DM-electron scattering [10]. The blue region
indicates stellar and BBN constraints [22, 57], while the green
region is a Xenon10 limit [7]. Projections for various exper-
imental proposals are from Refs. [24, 28, 58] (dotted lines).

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [26, 27]
for multiphonon production in superfluid helium. GaAs
improves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q, !), (9)

where pi is the initial DM momentum, Vcell is the primi-
tive cell volume, and S(q, !) is the dynamical structure
factor, defined in the same way as for neutron scattering
(see e.g. [59]). In the long-wavelength limit, S(q, !) is
given by

S(q, !) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)
q · e⌫,d,qe�iq·rd

�����

2

(11)

where d sums over atoms in the primitive cell with mass
md and position rd. b̄d is the scattering length, e⌫,d,q is

FIG. 4. Sensitivity of GaAs to scattering o↵ nucleons via a
scalar mediator, with kg-yr exposure. We consider the pro-
jected reach due to production of LO phonons (! = !LO ⇡ 36
meV) and that due to production into LA phonons as well,
with an even lower threshold ! > meV. Also shown is the
reach from multiphonon production in superfluid helium [26].

the phonon eigenvector of branch ⌫ and atom d at mo-
mentum q, and Wd the Debye-Waller factor of atom d.
Summing over the phonon eigenmodes requires a dedi-
cated software tool; we reserve this and a derivation of
Eq. (10) for future work [29].

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0:

|F⌫(q)|2 ⇡ b̄2
n

2mn

q2

���
p

AGae
irGa·q ±

p
AAse

irAs·q
���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can be
neglected.

For scattering via a massless mediator, we also in-
clude a (mXv0/q)4 form factor and express the reach
in terms of the cross section per nucleon at a reference
qref = mXv0, �n ⌘ 4⇡[b̄n(qref)]2. The result is shown in
Fig. 4, where we find a competitive reach with superfluid
helium. The astrophysical and cosmological constraints
on this scenario are rather tight but model dependent
and hence not shown; see Refs. [22, 23] for details. The
large di↵erence in sensitivity for the optical and acoustic
modes is due to the near cancellation in (12) for the op-
tical modes, since AGa ⇡ AAs. The phase factor in (12)
also induces a directional dependence for producing op-
tical phonons, which we will explore in future work [29].
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BEYOND BILLIARD BALL SCATTERING

▸ Nuclear recoil-based direct detection


▸ Nuclei, at least for high enough energy deposition, can 
typically be treated as free, and their kinematics is 
classical

ED =
q2

2mN

qmax = 2mXv

v ⇠ 10�3cq, ED
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LOOKING BEYOND BILLIARD BALLS

𝜒

DM

| i 〉 → | f 〉

crystal lattice

p

(q,!)
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For summary of theoretical formalism, including nuclear 
recoils, electrons, collective excitations, see 1910.08092
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• If only one of the constituent particles p, n, e is responsible for the transitions |ii ! |fi,

S(q,!) is DM model independent. Otherwise it depends on ratios (but not the overall

strength) of the couplings f0
p , f

0
n, f

0
e .

• For any given DM mass m� and incoming velocity v, only a slice in the (q,!) space, ! = !q,

is probed in the scattering process. The parabolic boundary of kinematic region for each m�

in Fig. 1 is the envelope of these slices for all v directions for fixed magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial velocity,

multiply by the number of DM particles in the detector, and divide by the detector mass, giving

R =
1

⇢T

⇢�

m�

Z
d
3
v f�(v)�(v) , (16)

where ⇢T is the target mass density, ⇢� is the local DM energy density, and f� is the DM’s velocity

distribution in the target rest frame. A common choice for f� is a truncated Maxwell-Boltzmann

(MB) distribution boosted by the Earth’s velocity with respect to the galactic rest frame,

f
MB
� (v) =

1

N0
e
�(v+ve)2/v20 ⇥

�
vesc � |v + ve|

�
, (17)

N0 = ⇡
3/2

v
2
0

"
v0 erf

�
vesc/v0

�
�

2 vesc
p
⇡

exp
�
�v

2
esc/v

2
0

�
#
. (18)

In the calculations presented in this paper, we take ⇢� = 0.4GeV/cm3, v0 = 230 km/s, vesc =

600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the di↵erential rate with respect to

the energy deposition onto the target !. This simply requires inserting delta functions into the

integrals to pick out the contributions with ! = !q:

d�

d!
=

⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
�
�
! � !q

�
, (19)

dR

d!
=

1

⇢T

⇢�

m�

Z
d
3
v f�(v)

d�

d!
. (20)

To summarize, we have the following algorithm for computing the rate for a given detection

channel.

• First, identify the initial and final states |ii, |fi according to the type of excitation.

• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on the

target Hilbert space to induce the transitions |ii ! |fi.
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =
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velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

For summary of theoretical formalism, including nuclear 
recoils, electrons, collective excitations, see 1910.08092

Dynamic Structure Factor
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LIGHTER TARGETS FOR LIGHTER DARK MATTER — ELECTRONS
3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Ze↵(r)/r. Ze↵(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l

0
, L once it converges.

Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, ne, (unobserved)
scintillation photons, n� , and heat. To calculate ne, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, Ni, and
a number of excited atoms, Nex, whose initial ratio is
determined to be Nex/Ni ⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, fR, is essentially zero at low energy,
resulting in ne = Ni and n� = Nex. The fraction, fe,
of initial quanta observed as electrons is therefore given
by fe = (1 � fR)(1 + Nex/Ni)�1

⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = Eer/W , where Eer is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with fR and Nex/Ni, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use Nex/Ni = 0.2, fR = 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < fR < 0.2, 0.1 < Nex/Ni < 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
Nex/Ni are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for fR is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n

(1) =
Floor(Eer/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n

(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus ne = n

0
e + n

00
e , where n

0
e represents the

primary electron and is thus 0 or 1 with probability fR

or (1 � fR), respectively, and n
00
e follows a binomial dis-

tribution with n
(1) + n

(2) trials and success probability
fe. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and FDM = 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
fR, Nex/Ni and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the mDM-�e plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(FDM = 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.
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▸ In insulators, like xenon


▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal

Excite electron to conduction band

Gap = DM Kinetic Energy

ED =
q2

2me

qmax = 2mXv



EXCITATION OF ELECTRONIC STATES BY DARK MATTER

3 Electronic Transition Rates

We now present the DM-induced electron transition rate calculation. We begin with a
general discussion and then in Secs. 3.1-3.4 consider the four different transition types in
turn: valence to conduction (v ! c), valence to free (v ! f), core to conduction (c ! c) and
core to free (c ! f). Finally, in Sec. 3.5 we discuss the treatment of in-medium screening.

The general derivation has been discussed previously (see e.g. Refs. [2, 5, 10, 15, 50]),
and we repeat it here for completeness and clarity, as a variety of conventions have been
used. Beginning with Fermi’s Golden Rule, the transition rate between electronic states
|i, si and |f, s

0
i due to scattering with an incoming non-relativistic DM particle, �, with

mass m�, velocity v, and spin � is given by

�i,s,�!f,s0,�0(v) = 2⇡V

Z
d
3
q

(2⇡)3
��hp0

,�
0; f, s0| �Ĥ |p,�; i, si

��2 �(Ef,s0 � Ei,s � !q) , (3.1)

where |p,�; i, si = |p,�i ⌦ |i, si, q is the momentum deposited onto the target, p = m�v,
p0 = p � q, �Ĥ is the interaction Hamiltonian, V is total volume of the target, and !q is
the energy deposition:

!q =
1

2
m�v

2
�

(m�v � q)2

2m�
= q · v �

q
2

2m�
. (3.2)

We assume that all quantum states are unit normalized. Modulo in-medium screening
effects, discussed below in Sec. 3.5, we can write Eq. (3.1) in terms of the standard QFT
matrix element, defined with plane wave incoming and outgoing states, by inserting =

V
P

s

R
d3k
(2⇡)3 |k, sihk, s| and using

hp0
,�

0;k0
, s

0
| �Ĥ |p,�;k, si ⌘

(2⇡)3

V 2

M�0s0�s(p0
,k0

,p,k)

4mem�
�
(3)

�
p0 + k0

� p � k
�
. (3.3)

We find

�i,s,�!f,s0,�0(v) =
2⇡

16V m2
em

2
�

Z
d
3
q

(2⇡)3
�(Ef,s0 � Ei,s � !q)

⇥

����
Z

d
3
k

(2⇡)3
M�0s0�s(p � q,k + q,p,k) e ⇤

f (k + q) e i(k)

����
2

, (3.4)

where e i(k) =
p
V hk|ii.

We will limit our analysis to matrix elements which only depend on q, and assume
that the electron energy levels are also spin independent, which allows the spin sums to be
easily computed:

�i!f ⌘
1

2

X

�,�0

X

s,s0

�i,s,�!f,s0,�0

=
4⇡

16V m2
em

2
�

Z
d
3
q

(2⇡)3
|M(q)|2 |fi!f |

2
� (Ef � Ei � !q) , (3.5)

fi!f ⌘

Z
d
3
k

(2⇡)3
e ⇤
f (k + q) e i(k) =

Z
d
3
x e

iq·x
 
⇤
f (x) i(x) , (3.6)
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| i 〉 → | f 〉

crystal lattice

p

(q,!)
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Figure 7. Calculated electronic band structures of targets in Table I.
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LATTICE DEGREES OF FREEDOM

▸ Lattice materials, such as 
semiconductors, share electrons 
between ions, making extracting 
their wave functions more involved


▸ Use a tool called density functional 
theory 


▸ Iteratively solve the Schrodinger 
equation with known lattice potential


▸ The              relation (= dispersion) 
of the available states is extremely 
important for determining viability of 
target

18

(a) Diamond: diamond-C,
Si, Ge. Two interpene-
trating face centered cubic
lattices, one o↵set by 1/4
along the cubic diagonal.
Each atom has four nearest
neighbors, forming corner-
sharing tetrahedra.

(b) Zincblende: ZnS, GaAs,
InSb, GaSb. Same arrange-
ment as diamond cubic, but
with two atom types, each
occupying one of the face
centered cubic lattices.

(c) Rock salt: NaCl, MgO,
LiF, NaF, NaI, PbS, PbSe,
PbTe. The two atom types
each form a face centered
cubic lattice, o↵set by 1/2
along the cubic axis. One
atom type is octahedrally
coordinated to the other
atom type and vice versa.

(d) Fluorite: CaF
2
. Ca

ions form a face centered
cubic lattice. Each Ca ion
is surrounded by eight F
ions in a cubic geometry.

(e) CsI. The two atom
types form interpenetrat-
ing primitive cubic lattices,
with an atom of one type
at the center of each cube
of the other type.

(f) ↵-quartz: SiO
2
. Each

Si ion is bonded to four
O ions, forming corner-
sharing tetrahedra.

(g) Corundum: Al
2
O

3
.

Each Al ion is bonded to
six O ions, forming octahe-
dra with a mixture of cor-
ner, edge and face-sharing
connectivities.

(h) Rutile: MgF
2
. Each

Mg ion is bonded to six
F ions, forming octahedra
with a mixture of corner
and edge-sharing connec-
tivities.

(i) Wurtzite: GaN, AlN,
ZnO. One atom type is
tetrahedrally bonded to the
other atom type and vice
versa. The tetrahedra
are corner-sharing and the
structure is a member of
the hexagonal crystal sys-
tem.

(j) CaWO
4
. Each Ca ion is

bonded to eight O ions, and
each W ion is bonded to
four O ions, forming corner-
sharing octahedra.

Figure 4. Crystal structures of targets in Table I.
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Figure 7. Calculated electronic band structures of targets in Table I.
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EXTENDED CALCULATION FOR ELECTRONIC EXCITATIONS

Ge

60 eV (Edft)

0.67 eV (Eg)
0 eV

�14 eV

�28 eV (3d)
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�195 eV (3s)

�1.3 keV (2p)
�1.4 keV (2s)
�11 keV (1s)
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Figure 1. Schematic representation of electronic states in Si (left) and Ge (right), divided into
core, valence (“val”), conduction (“cond”) and free. Shaded regions indicate the range of energies
for each type of electronic states. In a scattering process, electrons transition from either core or
valence states, below the Fermi surface at E = 0, to conduction or free states above the band
gap Eg. As outlined in Sec. 1.1 and explained in detail in Sec. 2, we compute the valence and
conduction states numerically using DFT (including all-electron reconstruction), model the core
states semi-analytically with RHF wave functions, and treat the free states as plane waves.

an upcoming publication. Currently a beta version of the program is available here [53]. We
also make available our DFT-computed wave functions [54] and the output of EXCEED-DM [55]
for Si and Ge.

1.1 Overview of the Calculation and Key Results

Before delving into the technical details, let us give a brief overview of the calculation and
highlight some key results. We divide the electronic states in a (pure) crystal into four
categories: core, valence, conduction and free, as illustrated in Fig. 1 for Si and Ge and
discussed in more detail in Sec. 2. At zero temperature, electrons occupy states up to
the Fermi energy, defined as the maximum of the valence bands and denoted by E = 0.
The band gap Eg, i.e. the energy gap between the occupied valence bands and unoccupied
conduction bands, is typically O(eV) for semiconductors, e.g. 1.11 eV for Si and 0.67 eV for
Ge; this sets a lower limit on the energy deposition needed for an electron transition to
happen.

The electronic states near the band gap deviate significantly from atomic orbitals and
need to be computed numerically. We apply DFT methods (including AE reconstruction)
for this calculation, and refer to the DFT-computed states as valence and conduction.
Specifically, for both Si and Ge, we take the first four bands below the gap to be valence,
which span an energy range of �12 eV to 0 and �14 eV to 0, respectively, and take bands
above the gap up to Edft = 60 eV to be conduction.
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Figure 2. Selection of results from Sec. 4, for DM-electron scattering via a heavy mediator in a
Ge target. Left: Contribution from each of the four transition types, valence to conduction (v!c),
valence to free (v!f), core to conduction (c!c), and core to free (c!f) to the scattering rate
binned in energy deposition (with �! = 1 eV) for a 1 GeV DM at a given reference cross section
�e = 10�40 cm2. Right: 95% C.L. projected limit (3 events) on �e assuming 1 kg-year exposure,
for energy thresholds corresponding to 1 and 5 electron-hole pairs. We compare our results with
QEdark calculations in Refs. [10, 11] and the semi-analytic model of Lee et al [3]; see text for details.

With more computing power we can in principle include more states, both below and
above the band gap, in the DFT calculation. However, since the states far from the band
gap can be modeled semi-analytically with reasonable accuracy, computing them with DFT
is inefficient. Below the valence bands, electrons are tightly bound to the atomic nuclei.
We model them using semi-analytic atomic wave functions and refer to them as core states.
These include the 1s, 2s, 2p states in Si and 1s, 2s, 2p, 3s, 3p, 3d states in Ge (the 3d
states in Ge are sometimes referred to as semi-core, and we will compare the DFT and
semi-analytic treatment of them in Secs. 2.2 and 3.3). Finally, above Edft = 60 eV, we
model the states as free electrons as they are less perturbed by the crystal environment.

With the electronic states modeled this way, we compute the rate for valence to con-
duction (v!c), valence to free (v!f), core to conduction (c!c) and core to free (c!f)
transitions induced by DM scattering, as discussed in detail in Sec. 3. The total rate is the
sum of all four contributions. We then use our calculation to update the projected reach of
direct detection experiments in Sec. 4, and compare our results with previous literature.

Figure 2 gives a glimpse of some of our key results. Here we consider the case of DM
scattering via a heavy mediator in a Ge target. The impact of core (3d) to conduction
contributions is clearly visible from both the differential rate (left panel, for m� = 1 GeV)
and the projected reach (right panel). They dominate the total rate for m� & 10 MeV,
and, as we can see from the right panel of Fig. 2, lead to significantly more optimistic reach
compared to previous DFT calculations implemented in QEdark [10, 11]; this is especially
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DM-ELECTRON DETECTION RATE CALCULATOR

▸ Codes are publicly available — see 2105.05253


▸ exceed-dm.caltech.edu


▸ EXtended Calcuation of Electronic Excitation for 
Direct detection of Dark Matter


▸ Contains repository for rate calculator 


▸ Only code to include all-electron wavefunctions for silicon 
and germanium (allows reconstruction of higher 
momentum components of valence states), as well as core 
states


▸ Manual coming soon

http://exceed-dm.caltech.edu


COMMENTS ON UTILIZING THE DIELECTRIC TO COMPUTE THE RATE

▸ For spin-independent scattering, the dielectric is sufficient 
to describe the scattering rate


▸ For the moment this is a repackaging —            is typically 
not known for the          needed for dark matter detection.


▸ Once the response is known for any         , spin-
independent rates can be calculated


▸ Either new measurements or DFT calculations allow one 
to access this information
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We show that the rate for dark matter–electron scattering in an arbitrary material is determined
by an experimentally measurable quantity, the complex dielectric function, for any dark matter
interaction that couples to electron density. This formulation automatically includes many-body ef-
fects, eliminates all systematic theoretical uncertainties on the electronic wavefunctions, and allows
a direct calibration of the spectrum by electromagnetic probes such as infrared spectroscopy, X-ray
scattering, and electron energy-loss spectroscopy (EELS). Our formalism applies for several common
benchmark models, including spin-independent interactions through scalar and vector mediators of
arbitrary mass. We discuss the consequences for standard semiconductor and superconductor tar-
gets, and find that the true reach of superconductor detectors for light mediators exceeds previous
estimates by several orders of magnitude, with further enhancements possible due to the low-energy
tail of the plasmon. Using a heavy-fermion superconductor as an example, we show how our formu-
lation allows a rapid and systematic investigation of novel electron scattering targets.

Dark matter (DM)–electron scattering was first pro-
posed as a strategy for sub-GeV DM detection less than
a decade ago [1], and there has been enormous theoreti-
cal [2–37] and experimental [38–51] progress since then.
Since electrons are not free particles, but are bound in
atoms and delocalized across dense materials, they can
be better matched kinematically to incoming light DM.
However, the rich complexity of condensed matter sys-
tems complicates the calculation of DM–electron scat-
tering rates. Not only do bound electrons have di↵erent
wavefunctions than their free-particle counterparts [52],
many condensed matter systems exhibit nontrivial col-
lective modes, such as plasmon excitations [53]. A for-
malism describing DM scattering with a single electronic
state [3, 25] can potentially miss important e↵ects of elec-
tron interactions and correlations, and must carefully ac-
count for ‘screening’ e↵ects where the electron density
rearranges itself to partially cancel out perturbations in-
duced by DM scattering [6].

In this Letter we propose to bypass the single-particle
formulation entirely, and frame the problem of DM–
electron scattering in terms of matrix elements of the
many-body electron density operator. This perspective
is inspired by a classic paper of Pines and Nozières on
collective energy loss in solids [54], and since it does not
require a description of the target system’s eigenstates,
it is equally applicable to all systems: atoms, molecules,
metals, insulators, or more exotic materials. Moreover,

it intrinsically accounts for all electron interactions and
correlations in the target by relating the scattering rate
to an experimentally measurable quantity, the complex
dielectric function ✏(q, !). Crucially, since the dielectric
function is defined as a linear response function, the re-
sponse of the target to a momentum transfer q and en-
ergy deposit ! is determined by density matrix elements
which are the same whether measured by DM–electron
scattering or by an electromagnetic probe, such as an
electron or an X-ray photon [55, 56]. The assumption
of linear response applies as long as DM interactions are
weaker than electromagnetic interactions.

The key result of this Letter (illustrated in Fig. 1) is
that the total scattering rate in an arbitrary target for
DM with mass m� and velocity v� is given by

�(v�) =

Z
d3q

(2⇡)3
|V (q)|2


2
q
2

e2
Im

✓
�

1

✏(q, !q)

◆�
, (1)

where !q = q ·v��
q2

2m�
, q = |q|, e is the electron charge,

and V (q) is the non-relativistic potential describing DM-
electron interactions. The full derivation can be found
in the Supplemental Material (SM), and follows mainly
from the arguments made in Ref. [54], discussed above.
Note that in this Letter we assume an isotropic mate-
rial (with ✏(q, !) a scalar), leaving the generalization to
anisotropic materials to future work [57].

The target-dependent object which appears in the in-
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ELECTRONIC STRUCTURE IN MATERIALS

▸ Smaller gap materials are available to access lighter dark 
matter


▸ Simplest example is a superconductor — meV gap opens

Hochberg, Pyle, Zhao, KZ 1512.04533 
Hochberg, Kahn, Lisanti, KZ et al 1708.08929



OPTICAL RESPONSE OF “SEMI-METALS”

▸ Band structure can be 
“quantum engineered”


▸ The point-like nature of the 
density of states at Fermi 
level implies that screening 
is less problematic

Zr
Te

Y Γ Z T S R-1.5

-1

-0.5

0

0.5

1

E-
E F (e
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No spin-orbit
Spin-orbit

(a) (b)

Figure 11: (a) ZrTe5 in the Cmcm space group. (b) Calculated electronic band structure for ZrTe5
with and without spin-orbit coupling. The Fermi level is set to 0 eV and marked by the dashed
line.

near the Fermi level as well.

In light of this, and with the additional motivation of reducing the band gap, we consider

replacing Te with Se in the hypothetical new compound ZrSe5 in the same Cmcm structure as

shown in Fig. 12(c). This chemical substitution has three e↵ects on the electronic properties of

the material. Firstly, the smaller ionic radius of Se reduces the total volume of the compound

which results in a Fermi level in the gap without any external pressure; however, this also has the

undesired e↵ect of increasing the band gap. Independent of the volume change, the lower spin-orbit

coupling in Se reduces the spin-orbit splitting of the bands to 2� ' 15 meV. Therefore, our DFT

estimates suggest that ZrTe5 with a small amount of Se alloying could provide a more desirable

volume contraction and spin-orbit-driven reduction in band gap. Interestingly, another Dirac cone

is present in the ZrSe5 compound, which doubles the number of Dirac cones and Dirac valence-

band electrons per unit cell. Since the DM scattering rate scales as ne/g, from stoichiometry

alone we would expect the overall rate to increase by a factor of mTe/mSe ' 1.5 for ZrSe5, with

additional increases near threshold from the reduced gap. Neither ZrSe5 nor Zr(Te,Se)5 have yet

been synthesized; should synthesis be possible, these compounds may be be promising targets for

DM detection.

37

Coskuner, Mitridate, Olivares, KZ 1909.09170

Hochberg, Kahn, Lisanti, KZ et al 1708.08929

Trickle, Zhang, KZ 1910.08092
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are present in all materials. As we will show, the low-
energy tail of the plasmon may improve the sensitivity
of superconducting detectors to light DM by several or-
ders of magnitude compared to previous estimates, and
materials with Fermi velocities slower than typical DM
velocities may allow DM to access the bulk of the loss
function rather than the tail. We illustrate these kine-
matic regimes in Fig. 2.

In this Letter, we adopt a generic benchmark form
for V (q),

V (q) = V (q) =
g�ge

q2 + m
2
�,V

, (4)

which is valid for fermionic DM coupling through a scalar
mediator � or vector V (see SM). We will mostly focus
on the case of a light mediator m

2
�,V ⌧ q

2 to emphasize
the behavior of the loss function as q ! 0. Approxi-
mating both the DM velocity distribution f(v�) and the
loss function as isotropic, integrating over DM velocities
yields the spectrum

dR

d!
=

⇢�

2⇡2e2⇢Tm�

Z
dq q

3
|V (q)|2W(q, !)⌘

�
vmin(q, !)

�
,

(5)
where ⇢T is the mass density of the target, ⌘(vmin) is
the mean inverse DM speed

R
vmin

d3v�f(v�)/v�, and
vmin = !

q + q
2m�

is the minimum DM speed required

to produce an excitation with momentum q and energy
! for DM of mass m�. To compare with the literature,
we take f(v�) to be the standard halo model with dis-
persion v0 = 220 km/s, escape velocity vesc = 550 km/s,
and Earth velocity vE = 232 km/s in the galactic frame.
We use a standard exposure of 1 kg-yr when computing
reach curves, and frame our results in terms of a ref-

erence cross section �e =
16⇡µ2

e�↵e↵�

((↵EMme)2+m2
�,V )2

, where µe�

is the electron–DM reduced mass, ↵e,� = g
2
e,�/(4⇡) in

terms of the couplings in Eq. (4), and ↵EM ' 1/137 is
the fine structure constant.

CONVENTIONAL SUPERCONDUCTORS

Ref. [5] first proposed using superconducting metals
such as aluminum (Al) as targets for DM–electron scat-
tering. The large density of states at the Fermi surface of
metals enhances the scattering rate and allows for ultra-
low thresholds, while the gapped superconducting state
is required to suppress noise and allows long-lived excita-
tions which can be detected. It was soon pointed out in
Ref. [6] that long-range Coulomb forces among electrons
near the Fermi surface would screen DM interactions if
mediated by a kinetically mixed dark photon. This ef-
fect was incorporated by e↵ectively multiplying the free-
particle matrix element by 1/|✏(q, !)|2, where ✏ was taken
to be the dielectric function ✏RPA of a free electron gas
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Existing Constraints

Light Mediator
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URu2Si2

Dirac

FIG. 3. The projected 3-event reach of a 1 kg-yr expo-
sure target of Al (orange) and URu2Si2 (green), computed
for a light mediator based on the experimentally measured
loss function W(q,!) ⌘ Im(�1/✏(q,!)) for Al [62] with
! 2 [1meV, 1 eV] and URu2Si2 [63] with ! 2 [1meV, 74meV].
We also show the reach for a Dirac material with gap 2� =
20meV, Fermi velocity vF = 4 ⇥ 10�4, background dielec-
tric constant  = 40, and Dirac band cuto↵ !max = 0.5 eV
(red); existing constraints from SENSEI [49], SuperCDMS
HVeV [51], DAMIC [47], Xenon10 [14], DarkSide-50 [43], and
Xenon1T [48] (shaded gray); and the theory target of a freeze-
in model when the mediator is a kinetically mixed dark pho-
ton [1, 64–66] (dashed blue). The corresponding plot for a
heavy mediator is shown in the SM.

(FEG) in the random phase approximation (RPA) at zero
temperature (see SM). For scattering at energies ! well
above the gap 2�, finite-temperature e↵ects are expected
to be negligible, since by construction T ⌧ 2�.

Even within RPA, our formalism identifies two impor-
tant corrections to the DM interaction rate from Ref. [6].
First, all interactions coupling to electron density are
screened, including a light scalar mediator and a non-
kinetically mixed vector mediator. This unifies the reach
for all models considered in Ref. [6]. Second, the ana-
lytic structure of the loss function imposed by causality
implies a particular choice of branch cut in ✏RPA di↵ering
from that used in Ref. [6] (see SM for details).

The second correction in particular improves the pro-
jected sensitivity of conventional superconductor detec-
tors to DM scattering through a light mediator by several
orders of magnitude at low masses. We can understand
this by examining ✏RPA in the kinematic regime q ⌧ kF ,
! ⌧ qvF relevant for sub-MeV DM scattering near the
Fermi surface, where kF is the Fermi momentum and vF

is the Fermi velocity, respectively 3.5 keV and 6.8⇥ 10�3

in Al. The result is [67]

✏RPA(q, !) ⇡
�
2
TF

2q2
+ i

3⇡!
2
p!

2q3v3F

, (6)
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 80], corrected by including plasmon decay for sub-MeV DM [81]. Stellar constraints
are from Ref. [82] and direct detection constraints are from DAMIC [61], DarkSide-50 [83], SENSEI [62], SuperCDMS [68],
XENON10 [14, 21], and XENON100 [83, 84].2

est optical mode,3

m�,min ⇠ 3 keV

✓
!O

10meV

◆
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.
We can also see that at higher masses, single optical

phonon production rates vary widely between materials.
This can be understood analytically. Consider first the

3One has to be careful with this estimate, as the lowest optical mode
is generally not the dominant mode, rather it is the mode which
is most “longitudinal,” or maximizes q · ✏. For simple diatomic
materials, there is one precisely longitudinal mode in the low q
limit, but the same is not true for more complex materials such as
Al2O3, as many gapped modes have a longitudinal component. A
general rule of thumb is that the highest energy optical mode is the
most longitudinal.

simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the
rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach



“Phonons

Power of Collective Excitations



EXCITING COLLECTIVE MODES

▸ Once momentum transfer drops below an keV, deBroglie wavelength 
is longer than the inter particle spacing in typical materials


▸ Therefore, relevant d.o.f. in target are no longer individual nuclei or 
ions


▸ Must coarse grain to describe DM coupling to “collective excitations”


▸ Collective excitations = phonon modes, spin waves (magnons)


▸ Can be applied to just about any material 


▸ Details depend on 


▸ 1) nature of collective modes in target material 


▸ 2) nature of DM couplings to target Schutz, KZ 1604.08206, Hochberg, Lin, KZ 
1604.06800, Knapen, Lin, KZ 1611.06228, 
Knapen, Lin, Pyle, KZ 1712.06598 Griffin, 
Knapen, Lin, KZ 1807.10291



LOOKING BEYOND BILLIARD BALLS

𝜒

DM

| i 〉 → | f 〉

crystal lattice

p

(q,!)
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.
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• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

For summary of theoretical formalism, including nuclear 
recoils, electrons, collective excitations, see 1910.08092

Tabulates the (lattice) 
potential the incoming 
DM sees — which in 
turn depends on the 
collective modes in the 
material



LATTICE DEGREES OF FREEDOM

▸ Will focus on crystals that have lattice d.o.f.
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NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

▸ Number of collective modes: 
3 x number of ions in unit 
cell


▸ 3 of those modes describe in 
phase oscillation — acoustic 
phonons — and have a 
translation symmetry 
implying gapless dispersion


▸ The remaining modes are 
gapped
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order

7
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▸ Some materials have an 
abundance of these modes


▸ When these gapped modes 
result from oscillations of 
more than one type of ion, it 
sets up an oscillating dipole: 
Polar Materials


▸ This oscillating dipole allows 
to compute an effective 
interaction and compute the 
dynamic structure factor

NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order
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KINEMATICS OF COLLECTIVE MODES

▸ Each phonon mode is a resonance.  The DM needs to be 
well matched kinematically to the modes to excite large 
response


▸ Better coupling to gapped modes

vs

ED ⇠ vXq

ED ⇠ csq

cs ⌧ vX
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order
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DM - COLLECTIVE MODE EFT

▸ Match relativistic ops onto non-relativistic ops


▸ Match NR ops onto lattice d.o.f.


▸ Compute DM excitation rates

(Trivial for SI interactions)

(Provided by Frohlich Hamiltonian or dynamic structure 
factor computed)

(Straightforward once one understands the (inelastic) 
kinematics of the system)

See Trickle, Zhang, KZ 2009.13534
Trickle, Zhang, KZ, Griffin, Inzani 1910.08092

Griffin, Inzani, Trickle, Zhang, KZ 1910.10716



DM - COLLECTIVE MODE EFT
11

Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L

c( )
4 = eµ q2

m�m 

g�g 
q2+m2

V

c( )
5a =

m 

m�

g�g
eff
 

q2+m2
V

c( )
5b =

m 

m�

g�g 
q2+m2

V

c( )
6 = �eµ 

m 

m�

g�g 
q2+m2

V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
8a = q2

2m2
�

g�g
eff
 

q2+m2
V

N, S, Lc( )
8b = q2

2m2
�

g�g 
q2+m2

V

c( )
9 = �eµ q2

2m2
�

g�g 
q2+m2

V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3a = c( )

3b =
g�g 

q2+m2
V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. For each model, the

leading order nonvanishing coe�cients c( )i for the NR EFT operators O
( )
i (defined in Table III) are listed

in the second to last column. ge↵ are the screened couplings defined in Eq. (14), and eµ = 1 + �eµ is half

the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9, eµe ' 1). The last column lists the lattice degrees of freedom

which enter the scattering potential, Eq. (27). All models can excite phonons, and models with S or L

response generated by DM-electron coupling can also excite magnons.

O1 and O4, respectively.5 Other types of scalar mediators generate O6, O10 and O11. A well-

motivated class of (hidden sector) models contain DM particles coupling to a vector mediator via a

5 Note that the standard SD interaction cannot be realized with a light mediator. In that case the leading interaction

is induced by longitudinal vector exchange, and is proportional to JP,�JP, rather than Jµ
A,�JA, µ.

See Trickle, Zhang, KZ 2009.13534



FROHLICH HAMILTONIAN AND EFFECTIVE INTERACTIONS

▸ For sufficiently simple interactions, the effective 
interaction is already known, e.g. Frohlich Hamiltonian: 4
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [17–19]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as
a scintillator for DM-electron scattering [11]. The blue re-
gion indicates stellar [62] and BBN constraints [63], while the
green region is a Xenon10 limit [8]. Projections for various
experimental proposals are from Refs. [19, 25, 29, 64] (dotted
lines).

to contribute and the scattering rate transitions to reg-
ular nuclear recoils for su�ciently large momentum and
energy deposited. We therefore restrict to the sub-MeV
mass regime, while other experimental proposals are well
suited for MeV-GeV DM scattering (Fig. 3).

Using Eq. (4), we find that the scattering rate for X
with initial momentum pi is:

�(pi) = 2⇡

Z
d3pf

(2⇡)3
�(Ef � Ei � !)|Mq|2, (6)

with matrix element

|Mq|2 =
2g2X
e2

C2

F

q2
. (7)

The total rate per unit time and target mass is then
given by R = 1

⇢
⇢DM

mX

R
d3vf(v)�(m�v), where f(v) is a

boosted, truncated Maxwell-Boltzmann distribution (see
e.g. [65]) with velocity dispersion v0 = 220 km/s, Earth
velocity ve = 240 km/s and escape velocity vesc = 500
km/s. To estimate the reach, we require 3 events for a
kg-year exposure. As is conventional in the literature, we
show in Fig. 3 the resulting sensitivity on gX in terms
of the DM-electron cross section,

�̄e ⌘ 4µ2

Xe
2g2X↵em

(↵emme)4
. (8)

where ↵em is the fine structure constant, me is the elec-
tron mass, and µXe is the electron-DM reduced mass.
We find that even with ⇠ gram-month exposures, polar
materials can reach the freeze-in benchmark. Away from

the freeze-in line, a kg-year exposure can extend the reach
of existing proposals by several orders of magnitude.

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [27, 28]
for multiphonon production in superfluid helium. The
strength of such an interaction can be parametrized by
the average DM-nucleon scattering length b̄n. GaAs im-
proves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q,!), (9)

where pi is the initial DM momentum, and S(q,!) is
the dynamical structure factor, defined in the same way
as for neutron scattering. In the long-wavelength limit,
S(q,!) is given by [66]

S(q,!) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)q · e⌫,d,qe�iq·rd

�����

2

(11)

where d labels atoms in the primitive cell with mass md

and position rd. b̄d is the scattering length, e⌫,d,q is the
phonon eigenvector of branch ⌫ and atom d at momentum
q, and Wd the Debye-Waller factor of atom d.

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0 and the phonon eigen-
vectors have a simple form:

|F⌫(q)|2 ⇡ b̄2n
2mn

q2
���
p
AGae

irGa·q ±
p

AAse
irAs·q

���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can
be neglected. Similar to the Fröhlich Hamiltonian, the
analytic approximations made here are only valid in the
sub-MeV mass regime; for larger masses, a reliable the-
oretical treatment requires a complete description of the
phonon band structure over the Brillouin Zone as well
as multiphonon processes, which are beyond the scope of
this work.

The approximations made here are expected to break
down for mX & 1 MeV. For such masses, the typical mo-
mentum transfer becomes comparable to or larger than

Knapen, Lin, Pyle, KZ 1712.06598



OPTICAL PHONONS IN POLAR MATERIALS

Single Optical Phonon, Single Acoustic Phonon

Polar Materials: Lin, Knapen, Pyle, KZ 1612.06598

Griffin, Inzani, Trickle, Zhang, KZ, 1910.10716
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 80], corrected by including plasmon decay for sub-MeV DM [81]. Stellar constraints
are from Ref. [82] and direct detection constraints are from DAMIC [61], DarkSide-50 [83], SENSEI [62], SuperCDMS [68],
XENON10 [14, 21], and XENON100 [83, 84].2

est optical mode,3

m�,min ⇠ 3 keV

✓
!O

10meV

◆
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.
We can also see that at higher masses, single optical

phonon production rates vary widely between materials.
This can be understood analytically. Consider first the

3One has to be careful with this estimate, as the lowest optical mode
is generally not the dominant mode, rather it is the mode which
is most “longitudinal,” or maximizes q · ✏. For simple diatomic
materials, there is one precisely longitudinal mode in the low q
limit, but the same is not true for more complex materials such as
Al2O3, as many gapped modes have a longitudinal component. A
general rule of thumb is that the highest energy optical mode is the
most longitudinal.

simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the
rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach



SPIN-DEPENDENT INTERACTIONS

▸ Some types of particle interactions have dominant 
interactions with spin


▸ Collective (electron) spin-waves = magnons


▸ Magnetically ordered materials (ferro- or ferri-magnets)

2

Magnetic dipole DM L =
g�
⇤�

�̄�µ⌫�Vµ⌫ + geē�
µe Vµ Ô

↵
� =

4g�ge
⇤�me

�
�↵�

�
q↵q�

q2

�
Ŝ�
� �̄e =

g2�g2e
⇡

6m2
�+m2

e

⇤2
�(m�+me)2

Anapole DM L =
g�
⇤2
�
�̄�µ�5�@⌫Vµ⌫ + geē�

µe Vµ Ô
↵
� =

2g�ge
⇤2
�me

✏↵��iq�Ŝ�
� �̄e =

g2�g2e
⇡

3↵2µ2
�e

2⇤4
�

Pseudo-mediated DM L = g��̄��+ geē i�
5e� Ô

↵
� = �

g�ge
q2me

iq↵1� �̄e =
g2�g2e
4⇡

µ2
�e

↵2m4
e

TABLE I. Dark matter models with SD interactions considered in this work. � is a spin-1/2 DM particle, and V , � are
ultralight (typically ⌧ eV) spin-1, spin-0 mediators, respectively. Ô

↵
� (with ↵ = 1, 2, 3 denoting the Cartesian coordinates) is

the nonrelativistic operator that couples to the electron spin, as defined in Eq. (4). q ⌘ |q| is the momentum transfer, and
Ŝ↵
� = �↵/2 is the DM spin operator. �e is the reference cross section defined in Eq. (11) that we will use to present the reach.

Here l, l
0 label the magnetic unit cells, and j, j

0 label the
magnetic atoms/ions inside the unit cell. Depending on
the sign of the exchange coupling Jll0jj0 , the spins Slj

and Sl0j0 tend to align or anti-align. The low energy ex-
citations are obtained by applying the Holstein-Primako↵
transformation to expand the spins around the ordered
ground state in terms of bosonic creation and annihila-
tion operators â†, â. The quadratic part of the Hamilto-
nian can then be diagonalized via a Bogoliubov transfor-
mation (see Appendix for details),

 
âj,k

â
†
j,�k

!
=

 
Uj⌫,k Vj⌫,k

V⇤
j⌫,�k U⇤

j⌫,�k

! 
b̂⌫,k

b̂
†
⌫,�k

!
, (2)

H =
nX

⌫=1

X

k21BZ

!⌫,kb̂
†
⌫,kb̂⌫,k , (3)

so that b̂†, b̂ are creation and annihilation operators of the
canonical magnon modes, which are collective excitations
of the spins. For a system with N magnetic unit cells
and n magnetic atoms/ions in the unit cell, there are n

magnon branches, labeled by ⌫, with N modes on each
branch, labeled by momentum vectors k within the first
(magnetic) Brillouin zone (1BZ). The n⇥ n matrices U,
V can be calculated for each k.

Magnon excitation from dark matter scattering — If
the DM couples to the electron spin,1 it can scatter o↵ the
target material and create magnon excitations. Suppose
the nonrelativistic e↵ective Lagrangian takes the form

L = �

3X

↵=1

Ô
↵
�(q)Ŝ

↵
e , (4)

where ↵ denotes the Cartesian coordinates, and q is the
momentum transfer from the DM to the target. The
operators Ô� for the three DM models we consider are

1
The spins in the lattice model may also contain orbital angular

momentum components. In that case, deriving the DM-lattice

spin coupling requires a careful matching calculation, which we

leave for future work. Here we assume negligible orbital angular

momentum, noting that this is the case for many familiar mate-

rials where 3d electrons are responsible for the magnetic order.

listed in Table I. Focusing on transitions from the ground
state to single magnon states |⌫,ki, we obtain the matrix
element as (see Appendix for details)

M
sisf
⌫,k (q) = �q,k+G

1
p
N⌦

3X

↵=1

hsf |Ô
↵
�(q)|sii ✏

↵
⌫,k,G , (5)

where ⌦ is the volume of the magnetic unit cell, G de-
notes a reciprocal lattice vector, and |si,f i are the initial
and final DM spin states. ✏⌫,k,G is the analog of polar-
ization vectors for the magnon modes,

✏⌫,k,G =
nX

j=1

r
Sj

2

�
Vj⌫,�kr

⇤
j +U⇤

j⌫,krj
�
e
iG·xj , (6)

where r↵j ⌘ R
↵1
j +iR

↵2
j parameterize the spin orientations

in the ground state,

S
↵
lj =

X

�

R
↵�
j S

0�
lj , {hS

01
lj i, hS

02
lj i, hS

03
lj i} = {0, 0, Sj} ,

(7)
and xj ⌘ xlj �xl is the position of the jth site within a
magnetic unit cell. As a simple example, a ferromagnet
with one magnetic ion per unit cell (n = 1) has r =
(1, i, 0), U = 1, V = 0, and thus, ✏ =

p
S/2 (1, i, 0) for

all k and G, reminiscent of a photon polarization vector.
From Eq. (5) we see that for any given q, only the

magnon modes with a definite momentum k within the
1BZ that satisfies q = k + G, for some G, can be ex-
cited, as a consequence of lattice momentum conserva-
tion. Summing over sf and averaging over si, we obtain

|M⌫,k(q)|2 =
�q,k+G

N⌦2
tr
�
⇢̂�Ô

↵
�(q)Ô

†�
� (q)

�
✏
↵
⌫,k,G✏

⇤�
⌫,k,G ,

(8)
where ⇢̂� = 1

2S�+112S�+1 is the density matrix for the

spin of the incoming DM. The total event rate per unit
target mass R is then obtained as

R =
1

⇢T

⇢�

m�

Z
d
3
v� f(v�)

X

⌫

X

k21BZ

�⌫,k(v�) , (9)

�⌫,k(v�) = 2⇡
X

q=k+G

|M⌫,k(q)|2 �
�
E�i � E�f � !⌫,k

�
,

(10)
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Magnons: what they are and how they couple to DM

❖ Technically, we need to expand the spins in terms of bosonic creation/annihilation 
operators via the Holstein-Primakoff transformation…

❖ … and then diagonalize the Hamiltonian via a Bogoliubov transformation…
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where

global coordinates local coordinates (ground state spin points in +z direction)

canonical magnon modes
(quanta of collective precession patterns)



ABSORPTION OF BOSONIC DARK MATTER

▸ Rather than depositing kinetic energy, entire mass energy 
can be absorbed.


▸ How about 1-100 meV mass axions?
4

FIG. 1. Spectra of gapped phonon polaritons and magnons at zero momentum for several representative

targets considered in this work. These collective excitations have typical energies of O(1 - 100)meV, and can

be utilized to search for axion DM in the mass window ma ⇠ O(1 - 100)meV. Longer lines with darker colors

correspond to the resonances in Figs. 3, 4 and 5, while the shorter ones with lighter colors represent modes with

suppressed couplings to axion DM due to selection rules.

level axion interactions of interest are:

L = �
1

4
ga��aFµ⌫F̃

µ⌫ +
X

f=e,p,n

gaff

2mf
(@µa)(f̄�

µ
�
5
f)�

X

f=p,n

gaf�

4
aFµ⌫(f̄ i�

µ⌫
�
5
f) , (1)

where the three terms are the axion’s electromagnetic, wind and electric dipole moment (EDM)

couplings, respectively. In the nonrelativistic limit, the e↵ective interaction Hamiltonian is1

�Ĥ = �ga��

Z
d
3
x aE ·B �

X

f=e,p,n

gaff

mf
ra · sf �

X

f=p,n

gaf� aE · sf . (2)

These couplings can be further matched onto axion couplings to low energy degrees of freedom in a

crystal. In particular, phonon excitation results from couplings to atomic displacements ulj = xlj�x0

lj ,

where l labels the primitive cell, j labels the atoms within each cell, and x0

lj are the equilibrium

positions, while magnons can be excited via couplings to the (e↵ective) spins of magnetic ions Slj .

An axion field oscillating with frequency ! = ma and wavenumber p = mava is represented by

a(x, t) = a0 cos (p · x� !t) , (3)

where the field amplitude is related to the energy density via ⇢a = m
2
aa

2
0
/2. The resulting e↵ective

1 The coupling to the axial current also generates a term proportional to masf · vf , we neglect this term since its

coupling to collective spin excitations is suppressed compared to the one generated by the ra · sf term.

6

Process Fundamental interaction E↵ective coupling in Eq. (4) Rate formula

Axion + B field ! phonon aE ·B f j =
1p
2
ga��

e
p
⇢a

ma
B · "�1

1 · Z⇤
j Eq. (18)

Axion ! magnon ra · se f j = �
ip
2
gaee (gj � 1)

p
⇢a

me
va Eq. (27)

TABLE I. Summary of the potentially detectable channels identified in section IV. The axion field a is given by

Eq. (3), ⇢a is its energy density, and va is its velocity. The axion couplings ga�� and gaee are defined in Eqs. (1)

and (2), and given by Eqs. (31) and (32) for the QCD axion. "1 is the high-frequency dielectric constant due

to electronic screening, Z⇤
j is the Born e↵ective charge tensor of the ion, and gj is the Landé g-factor. " here.

II. GENERAL FORMALISM FOR ABSORPTION RATE CALCULATIONS

In this section, we adapt the DM scattering calculations in Refs. [35, 37] to the present case of

bosonic DM absorption. Unlike the scattering case, light bosonic DM (denoted by a in what follows)

should be treated as a classical field. Within the coherence time ⌧a = (mav
2
a)

�1
⇠ 10�7 s (10meV/ma),

its e↵ect can be modeled as a harmonic perturbation on the target system as in Eq. (4). In this work,

we focus on configurations with no external AC electromagnetic fields, so that ! = ma. An AC

external field with frequency !e would generate perturbations with ! = |ma ± !e|, for which the

calculations in this section also apply.

Phonons and magnons arise from quantizing crystal lattice degrees of freedom, displacements ulj

and e↵ective spins Slj respectively, which DM can couple to, as mentioned in the Introduction — see

Eq. (4). The e↵ective couplings f j depend on the atom/ion types, hence the subscript j. We will

keep f j general in this section, and derive their expressions for the case of axion DM in Sec. IV.

We assume the target system is prepared in its ground state |0i at zero temperature. The transition

rate from standard time-dependent perturbation theory reads

� =
X

f

��hf | ˆ�H0|0i
��2 2⇡ �(! � !f ) . (5)

Strictly speaking, since phonons and magnons are unstable particles, the sum over final states f should

include multi-particle states resulting from their decays. In practice, however, when ! is close to a

phonon/magnon resonance, we can simply smear the delta function to the Breit-Wigner function and

Trickle, Zhang, KZ 2005.10256
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FIG. 3. Projected reach on ga�� from axion absorption onto phonon polaritons in Al2O3, CaWO4, GaAs and

SiO2, in an external 10T magnetic field, averaged over the magnetic field directions, assuming 3 events per

kilogram-year. Also shown are predictions of the KSVZ and DFSZ QCD axion models, and horizontal branch

(HB) star cooling constraints [63].

for a sapphire target, when b̂ is parallel (perpendicular) to the crystal c-axis, chosen to coincide with

the z-axis here, only 2 (4) out of the 6 resonances appear. This observation provides a useful handle

to confirm a discovery by running the same experiment with the magnetic field applied in di↵erent

directions.

B. Magnon excitation via the axion wind coupling

To compute the magnon excitation rate, we substitute the coupling f j in Eq. (35), into the rate

formula Eq. (27). In Sec. III, we discussed three strategies to alleviate the suppression of axion-magnon

couplings due to selection rules: external magnetic fields, anisotropic interactions, and nondegenerate

g-factors. In this subsection, we show the projected reach for each of these strategies. The results are
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FIG. 5. Projected reach on gaee from axion-to-magnon conversion, compared with DFSZ (assuming 0.28 

tan�  140) and KSVZ model predictions, as well as white dwarf (WD) constraints from Ref. [64]. The

suppression of axion-magnon couplings is alleviated by using the three strategies discussed in the main text:

lifting gapless magnon modes by an external magnetic field (YIG target in a 1T magnetic field, compared to

the scanning scheme of Ref. [49]), anisotropic interactions (NiPS3 target), and using targets with nondegenerate

g-factors (hypothetical toy models based on YIG, referred to as YIGo and YIGt). For all the cases considered

we assume 3 events per kilogram-year exposure, and take the magnon width to frequency ratio �/! to be 10�2

(solid) or 10�5 (dashed).

c. Nondegenerate g-factors. Finally, we consider coupling the axion to gapped magnon modes in

the presence of nondegenerate g-factors. We are not aware of a well-characterized material with non-

degenerate g-factors so, as a proof of principle, we entertain a few toy models, where a nondegenerate

` component is added to the e↵ective spins S in YIG. In reality, all the magnetic ions Fe3+ in YIG

have (`, s, S) = (0, 5/2, 5/2); the orbital angular momenta of 3d electrons are quenched. In Fig. 5, we

show the reach for two toy models, with either the octahedral sites or the tetrahedral sites modified

to have (`, s, S) = (1, 5/2, 7/2). In each case, only one of the 19 gapped magnon modes, at 7meV



DIRECTIONALITY IN ANISOTROPIC MATERIALS!

▸ Crystal Lattice is not Isotropic


▸ Especially pronounced in certain 
materials, like sapphire

some point to have a number on hand]) The orientation is illustrated in Fig. 5, where ✓e is
the angle between the Earth’s axis and the direction of its velocity and ✓lab gives the latitude at
which the experiment is constructed. We choose the crystal orientation and coordinate system
such that the z-axis is aligned with the Earth’s velocity at t = 0. For GaAs the crystal axis is
along one for the faces of the cubic lattice, while for sapphire it is the axis along which the Al
atoms are positioned (Fig. 3) [TL: Instead, just show all xyz directions on the figure
of the crystals for GaAs and sapphire. Possible to make the statement that the
dipole coupling is largest along the primary crystal axis?].

Since we explicitly orient the crystal relative to the dark matter wind, there is no dependence
of the DM flux or scattering rate on the latitude at which the experiment is located. As a
function of time, the unit vector of ve in the crystal coordinate frame is

v̂e =

0

B@
sin ✓e sin �

sin ✓e cos ✓e(cos � � 1)

cos
2
✓e + sin

2
✓e cos �

1

CA (10)

with � = 2⇡ ⇥ t/24h the angle parametrizing the rotation of the Earth around its axis.

ve

Earth axis of  
rotation

t=0�e

Cygnus
�e ~ 42°	

DEC ~ 48°

Celestial  
equator

crystal axis

�lab

�lab

crystal axist=1/2 day

FIG. 5. The setup assumed in our calculation of DM scattering with the crystal. At t = 0, the z-axis of

the crystal coordinate system is aligned with the Earth’s velocity ve. With this choice, the modulation

is independent of the position of the lab, indicated by ✓lab. The Earth’s velocity is approximately in

the direction of Cygnus, which is at an angle of ✓e ⇡ 42
� relative to the Earth’s axis of rotation. We

also illustrate the orientation of the crystal after a half-day rotation.
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FIG. 7. Mode 30 (left), mode 16 (center) and mode 4 (right), which dominate the scattering for

(dark) photon mediator processes at long wavelengths. Modes 30 and 16 are characterized by a large

oscillation dipole of the Al (gray) and O (red) atoms respectively. Mode 4 exhibits two large dipoles

from the Al atoms, oscillating in anti-phase. Adobe Acrobat is required to view this animation.
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FIG. 8. Modulation of the scattering rate of the dominant optical phonon modes over a sidereal day,

for different DM masses. The percentage in the legend indicates the weight of the mode in the total

rate, after excluding the acoustic modes.
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DM-PHONON DETECTION RATE CALCULATOR

▸ Codes are publicly available — see 2102.09567 


▸ phonodark.caltech.edu


▸ Contains repository for rate calculator 


▸ 26 materials possible, based on analysis of 2102.09567


▸ Only code to do fully directional rate calculation


▸ Only code to calculate rate for any of the EFT operators 
highlighted earlier


▸ Manual coming soon



COLLECTIVE PHENOMENA IN MATERIALS

mass

100 GeV1 GeV1 MeV1 keV1 eV1 meV

Nuclear recoil


XENON1T


LZ

Electron 
excitation


Semiconductor


SuperCDMS

Absorption
Super-

conductors

Collective Excitations — 
Phonons/ Magnons

~eV energy 
resolution

~keV energy 
resolution

~meV energy 
resolution

QCD axion, “ultralight frontier”

Dirac 
Materials

Polar 
Crystals

Superfluid 
helium

Strong rate, immediate experimental feasibility



EXPERIMENTAL PROSPECTS
▸ Sensor to detect phonons coupled to DM “absorber”


▸ Zero-field read-out of phonons


▸ Now funded by DoE — TESSERACT (TES with Sub-EV Resolution and Cryogenic 
Targets)


▸ For a polar crystal target — Sub-eV Polar Interactions Cryogenic Experiment 
(SPICE).  For superfluid helium, HeRaLD



SUMMARY

▸ Electronic excitation and collective excitations provide a 
path to detect light DM


▸ Theory framework for computing DM interaction rates in 
materials is now well-developed


▸ New experiments such as TESSERACT have broad 
discovery potential for light DM


