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No Global Symmetries

Expectation: consistent theories of quantum gravity have no global 
symmetries. At the UV cutoff scale, not even approximate global 
symmetries.

Surprisingly wide range of applications!  e.g.:

• Weak Gravity Conjecture


• Chern-Simons terms and axions


• Existence of “twist” strings (ZN strings, Alice strings, …)

(Wheeler; Hawking; Zeldovich; Banks, 
Dixon; Banks, Seiberg; Harlow, Ooguri;

rapidly growing list of others….)
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Black Holes Destroy Global Charges
+q

−q

+q −q

+q

−q
Hawking radiation: 
 
Random thermal emission of 
global charge. 
 
Modern argument: Banks, 
Seiberg 2010

 

 
 

T =
1

8πGNMBH

S =
A

4GN
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Black Holes and Gauge Charge

+QBH

⃗E
+q

−q

Measurable  field outside 
BH: preferential discharge, 
if light charged particles exist. 
 
                  
 

 field contributes to BH 
energy: extremality bound

⃗E

μ ∝ QBH

⃗E

MBH ≥ 2eQBHMPl
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No Labels in QG

arXiv:1909.10355, Jake McNamara, Cumrun Vafa

Charge as a label we can assign to a state, which cannot be altered by 
continuous variations of the state.

Extend to labels on regions of different dimension, even all spacetime. 
In quantum gravity, everything deformable to everything else.

Example: instanton number 
is a label on gauge field 
configurations in spacetime.  
 
Should be forbidden!
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Hypothesis”
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The Ubiquitous Axion: Lamppost or Principle?
There is a large Landscape of known, consistent quantum gravity 
theories containing gauge fields. (String compactifications.) 
 
Almost always couple to axions via  interactions!θ tr(F ∧ F)

Often higher-dimensional gauge fields  
with Chern-Simons couplings 

, and .

Cp

Cp ∧ tr(F ∧ F) θ = ∫Σp

Cp

Σp

Is it a generic prediction, or an accident of our 
current abilities?
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Moduli and Axions for Gauge Couplings
In string theory, the gauge kinetic function is often a dynamical field:

1
16πi ∫ d2θ τ(x) 𝒲α(x)𝒲α(x)

axion “saxion” 
or scalar 
modulus

τ(x) =
1

2π
θ(x) + 4πiS(x), ⟨S⟩ =

1
g2

Note: I am not 
assuming TeV-
scale SUSY! Just 
compactification-
scale SUSY.
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Aspects of Moduli Fields
The limit where , i.e., , lies at infinite distance.  
No global symmetries: cannot send gauge couplings to zero. 
 
(cf. Ooguri/Vafa “Swampland Distance Conjecture”; Arkani-Hamed/Motl/Nicolis/Vafa “Weak Gravity Conjecture”)

g → 0 S → ∞

ℒ ⊃ M2
*∂μ(log S)∂μ(log S) +

M2
*

S2
∂μθ∂μθ

Have in mind Lagrangians like:

(can be more complicated in multi-field cases).
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Aspects of Axion Fields
ℒ ⊃ M2

*∂μ(log S)∂μ(log S) +
M2

*

S2
∂μθ∂μθ

Axion decay constant is -dependent, and never zero at finite distance. 
“Fundamental axion”: PQ symmetry is never restored.

S

Axion strings are 
fundamental objects 
(e.g., F-string, 
wrapped D-brane).

decay constant f2

11



Conventional Axions vs Fundamental Axions

Conventional axion:  

• Pseudo-Goldstone boson 
for 


• PQ phase transition forms 
EFT strings


•  is an ordinary 4d scale, 
string tension typically

U(1)PQ

fa

∼ f2
a

Fundamental axion:  

• Pseudo-Goldstone boson 
only for 


• No phase transition, axion 
strings fundamental


•  a UV scale (~KK scale), 
string tension potentially 
as large as 

∂μθ

fa

faMPl
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Axions Remove Instanton Number Label

arXiv:2012.00009, Ben Heidenreich, Jake McNamara, Miguel Montero, MR, Tom Rudelius, Irene Valenzuela

1
2

f2
a(∂θ)2 +

θ
32π2

Fa
μνF̃aμν ⇒ ∂μ( f2

a∂μθ) =
1

32π2
Fa

μνF̃aμν

instanton number 
density

Gauss law constraint! Axion causes would-be invariant in 
spacetime (instanton number) to vanish: integral of total derivative.

The axion has a job to do in QG:

The axion serves to gauge a would-be -form global  symmetry. 
But this is qualitative! Can we guide experiments more?

(−1) U(1)
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Weak Gravity Conjecture (WGC)
hep-th/0601001, Arkani-Hamed, Motl, Nicolis, Vafa

m < 2eqMPl

mmag < 2
2π
e

qmagMPl

Exists electrically charged 
object with:

Electric/Magnetic duality 
 exists magnetically 

charged object with: 
⇒

Necessary condition for 
discharge of extremal 
black holes.
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(  UV cutoff )⇒ ≲ eMPl



Tower Weak Gravity Conjecture
Λ ≲ eMPl is our cutoff energy. But what happens there?

2015-2017: Ben 
Heidenreich, MR, 
Tom Rudelius 
 
(related: Montero, 
Shiu, Soler ’16; 
Andriolo, Junghans, 
Noumi, Shiu ’18)

Internal consistency under dimensional reduction / examples:

There is always an infinite tower of charged particles of different 
charge , each of which obeys the bound q m < 2eqMPl .

Smooth interpolation
Black holes

Light charged  
particles
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p-Form Weak Gravity Conjecture

17

Tp ≲ epqMPl

General (p-form) case: , exists a charged -brane with 

tension 

−
1

4e2
p

F2
μ1⋯μp+1

(p − 1)

Axion (0-form) case: , exists a charged instanton with action
1
2

f2
a(∂μθ)2

S ≲
q
fa

MPl

by analogy (or dimensional reduction), 



Axions and the WGC

Given , 

 from usual QCD instantons:      

 


                
 
Nontrivial phenomenological prediction! 
QCD axion with .

θ tr(F ∧ F)
Sinst

fa ≲
g2

8π2
MPl

fa ≲ 1.5 × 1016 GeV

Axion as “0-form gauge field”: .Sinst ≲
1
fa

MPl

via C. O’Hare, github
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Axion Strings

4d axion has a “magnetic dual” 2-form  
B-field: ∂μθ ∼ ϵμνρσ∂[νBρσ]

Magnetic axion WGC: string tension

T ≲ 2πfaMPl ≲
g2

4π
M2

Pl

arXiv:2108.11383 Ben Heidenreich, MR, Tom Rudelius

19

Assume  coupling.θF ∧ F

String excitations  
      — at the ordinary gauge field’s WGC scale!

Mstring ≲ gMPl



Tower WGC Modes from Axion Strings

String excitations . 
In fact, these can can carry  gauge charge! 
“Anomaly inflow” (Callan, Harvey 1985) 
 

 interaction  nontrivial gauge 

invariance, .


Charged modes on string cancel the . 
 
Tower WGC automatic, via axion physics! 
What about abelian case? What instantons?

Mstring ≲ gMPl
A

θF ∧ F ⇒
A ↦ A + dλ, B ↦ B +

1
4π

λF

λF

arXiv:2108.11383 Ben Heidenreich, MR, Tom Rudelius
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New Origin of Axion Potential

It is well known that for axion coupling to non-Abelian gauge group, 
instantons generate a potential for the axion. 


Yet for axion coupling to abelian gauge fields, the axion could still 
acquire a potential through loops of magnetic monopoles.                                        
(Fan, Fraser, MR, Stout 2021, just published in Phys.Rev.Lett.)

Existence of magnetic monopoles: “completeness hypothesis”           
Polchinski 2003
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The Witten Effect
Add the time-reversal odd term in the action:  

 
Then, derive the modified Maxwell equations.

θ
8π2 ∫ F ∧ F

Edward Witten, 1979

Electric Gauss’s law:   

Consider a magnetic monopole, which sources B  

Magnetic monopole acquires an electric charge!

∇ ⋅ E +
e2

4π2
θ (∇ ⋅ B) = 0

⇒
QE

e
= −

θ
2π

Magnetic monopole provides boundary condition allowing effect. We 
haven’t seen one (yet), so no experimental probe of this T-violating effect.
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Monopole Refresher: ’t Hooft-Polyakov
 symmetry broken by an adjoint vev: classical 

solution of ’t Hooft-Polyakov (’t H-P) monopole.


                                                       

                                                       

                                                        
 
 
The solution has 4 zero modes (collective coordinates): 3 translations, 1 U(1) 
(large gauge transformation, not vanishing at infinity).


review: Shifman, Advanced Topics in Quantum Field Theory, Chapter 4

SU(2) → U(1)

ϕa = v ̂r aH(r), Aa
i = ϵaij 1

r
̂r jF(r)

r → ∞ : H(r) → 1, F(r) → 1

r → 0 : H(r) → 0, F(r) → 0

Shifman
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Possible charged states: not only magnetic monopoles, but also dyons 
(particles with both magnetic and electric charges). 


Monopole worldline EFT: compact scalar  (dyonic collective 
coordinate). Generic consequence of  (anomaly inflow).


Quantum particle on a circle: spectrum labeled by integers (charges!)

σ ≅ σ + 2π
θF ∧ F

0e

{Dyon tower

⋯

ground state m2
0 = m2

M

m2
n = m2

M + m2
Δn2

±e

±2e

±3e

excited states

25

The Dyon Tower



QE

e
= n −

θ
2π

, n = 0, ± 1, ± 2,⋯Modified charges:

L =
1
2

·σ2 +
θ

2π
·σ

Conjugate momentum:   Πσ = ·σ +
θ

2π

: dyonic collective coordinateσ

Hamiltonian:  

H =
1
2 (Πσ −

θ
2π )

2

⇒ En =
1
2 (n −

θ
2π )

2

1
2 (−i∂σ −

θ
2π )

2

ψn = Enψn
26

The Witten Effect for Dyons



The corresponding energy spectrum 

m2
n − m2

M = m2
Δ (n −

θ
2π )

2

ground state monopole mass at θ = 0

Integrating out these states  vacuum potential for the axion ! 
⇒ θ

periodicity through “monodromy” or 
rearrangement of the eigenstates: 


n → n + 1, θ → θ + 2π
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Note: different from the axion potential generated by monopole and anti-
monopole plasma! Fischler, Preskill 1983; Kawasaki, Takahashi, Yamada 2015; Nomura, 
Rajendran, Sanches 2015; … 


A plasma of monopoles and anti-monopoles could be generated through the 
Kibble-Zurek mechanism in the early Universe. 


Here we talk about the axion potential from the virtual effects of monopole 
(dyon) loops. 

28



Two Viewpoints
1. Integrate out the dyons to get a Coleman-Weinberg potential for axion.


2. Do the path integral over all monopole loops. 

Related by Poisson resummation

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x� x0)2 �m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m +m2
�

✓
n�

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�
m2

m⌧

2
�

m2
�⌧

2

✓
n�

✓

2⇡

◆2
!
.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m

2
�⌧(n� ✓

2⇡ )
2

=
X

`2Z

s
2⇡

m2
�⌧

exp

✓
�
2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�
m2

m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m

2
m

32⇡4`3
e�2⇡`mm/m� cos(`✓)⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,
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with Z(⌧, ✓) the sum over transition amplitudes at fixed
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at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�
m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
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over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�
m2

m⌧

2
�

m2
�⌧

2

✓
n�

✓

2⇡

◆2
!
.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m

2
�⌧(n� ✓

2⇡ )
2

=
X

`2Z

s
2⇡

m2
�⌧

exp

✓
�
2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�
m2

m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m

2
m

32⇡4`3
e�2⇡`mm/m� cos(`✓)⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)
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the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [29, 30], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [31] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [28,
32–34] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
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worldlines
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D(fields) e�Se[fields,worldlines,✓] , (5)
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The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [35].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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1X

n=0

1

n!
(ZS1)n = exp
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Hence Ve↵(✓) = �
1
V ZS1 ; we work in the first-quantized

picture to compute the amplitude ZS1 [36]. We sum
over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1
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Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .

There are two ways we can compute ZS1 . For a free
particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
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We will sum over all dyon modes, labeled by n 2 Z.
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mass spectrum takes the form
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This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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After integrating, the result is
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

We can interpret ` in this sum as the winding number
of � around the loop. If we take the relativistic comple-
tion of the action (2) with the dyon collective coordinate
� treated as another (compact) spatial direction in which
the monopole propagates, analogous to the DBI action:
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the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [29, 30], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [31] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [28,
32–34] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.
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We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form
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D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,
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The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [35].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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Hence Ve↵(✓) = �
1
V ZS1 ; we work in the first-quantized

picture to compute the amplitude ZS1 [36]. We sum
over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .

There are two ways we can compute ZS1 . For a free
particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain
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This agrees with (3) to order 1/l�, and in certain cases
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there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

We can interpret ` in this sum as the winding number
of � around the loop. If we take the relativistic comple-
tion of the action (2) with the dyon collective coordinate
� treated as another (compact) spatial direction in which
the monopole propagates, analogous to the DBI action:
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 in ’t H-P model: same 
instanton action as in YM theory!
e−Sinst ∼ e−8π2/g2

winding number in 
the  directionσ
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In a hidden gauged  sector with an axion and monopoles: both axion and 
monopole contribute to DM 

U(1)

dark gauge coupling

m
on

op
ol

e 
m

as
s

ma(T) = mloop
a + mplasma

a (T)

Caveat:  
 
Assumes no light charged 
fermions!  
 
Work in progress for SM case 
(w/ Fan, Fraser, Stout, Telem)
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Summary

Thank You!

Axions have a job to do in quantum gravity: eliminating a global (instanton 
number) symmetry by gauging it.


Fundamental axions need not be ordinary pseudo-Nambu-Goldstone bosons: 
no point in field space where Peccei-Quinn is restored.


Charged modes on fundamental axion strings (Callan-Harvey) are the 
predicted Weak Gravity Conjecture towers, when  couplings are present.

The localized worldline fields on virtual magnetic monopoles lead to axion 
potentials.


Minimum mass for axion coupled to photons? Depends on subtleties about 
fermion mass dependence. Work in progress (w/ Fan, Fraser, Stout, Telem)

θF ∧ F
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