

AstroDark-2021 (Dec 7-10, 2021) IPMU, Japan (online)

Dark Matter Searches and NSI Search with Super-Kamiokande

21/12/07 Koun Choi, IBS-CUP for the Super-Kamiokande Collaboration

Kamioka underground observatory

The Super-Kamiokande (SK)

20-inch PMT (Hamamatsu R3600) • Q.E. : 21% at 360~400nm

Water Cherenkov ring-imaging detector

- 50 ktons water (22.5 ktons fiducial volume)
- II,000 20" Photo-Multiplier Tubes
- Being operated since 1996
- SK-Gd (0.01% Gadolinium in SK) started in July. 2020

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of To

Outline

- Indirect Searches for dark matter
 - Galactic Center & Halo (2020)
 - Earth (2018)
 - Sun (2015)
- Direct search for boosted dark matter
 - motivation
 - electron elastic scattering search (2017)
- Non Standard Interaction Search (2020)

High energy neutrinos in SK = atmospheric (atm) neutrinos (background for proton decay, DM signal, ...)

- > Neutrinos produced by interaction of cosmic rays (p, α , ...) with the atmosphere
- coming from all direction (half of them through the Earth)
- wide range of energies: $O(10^{-1})$ GeV to $O(10^{2})$ GeV
- wide range of baselines: O(10) km to $O(10^4)$ km

http://www-sk.icrr.u-tokyo.ac.jp/sk/sk/atmos-e.html

Atmospheric neutrinos

Atmospheric neutrino oscillation analysis frame

- Energy and direction are critical information distribute events in 2d zenith angle & energy bins
- Events are classified into many sub samples (14 samples for FC) according to kinematics, number of rings and other features
- Oscillation parameters are fit by maximum likelihood method together with 'pulls' of the systematics (~150 of them)

Indirect DM searches

- It's a directional search for excess of neutrino flux. We've done 'cut & count analysis' in past. But for a wide-spread signal buried under BG, not so efficient
- Basically we follow oscillation analysis framework; Instead of fitting oscillation parameters, fit parameters of DM model, i.e. DM flux strength.
- This is possible thanks to the precise atmospheric neutrino MC and systematic error table, which also allows us to have a signal MC by reweighting treatment (public DM-induced neutrino flux generator, "DarkSUSY" is used to calculate re-weighting factor)

Test signal contribution by pulled χ^2 method

Maximum log likelihood (based on Poissonian statistics) fit for "SK data" against "atmospheric neutrino MC + WIMP-induced neutrino MC" to find <u>best fit value of WIMP contribution</u>

$$\begin{split} \chi^2 &= \min_{\{\epsilon_j\}} \left[2\sum_{i=1}^N \{N_i^{exp} - N_i^{data} + N_i^{data} ln(N_i^{data}/N_i^{exp})\} + \sum_{j=1}^J \left(\frac{\epsilon_j}{\sigma_j}\right)^2 \right], \text{ where} \\ N_i^{exp} &= N_i^{BG} (1 + \sum_{j=1}^J f_j^i \epsilon_j) + \beta N_i^{\chi} (1 + \sum_{j=1}^J g_j^i \epsilon_j). \end{split}$$

 β is the global normalization parameter stands for the allowed fraction of the signal MC input

i: bin index;
j: systematic error index;
Øj: systematic error;
ɛj:"pull";
fji (gji): predicted
fractional change of i-th
bin due to Øj

P.Mijakowski's slides

 $heta_{
m GC}$, $heta_{
m sun}$

or $\theta_{\rm zenith}$

ATM MC (BKG)

with oscillations

WIMP signal

for illustration

enhanced

Dark matter searches at Super-Kamiokande

• Search for excess of neutrinos form Earth/Sun/Milky Way • FIT: for each tested WIMP mass, find configuration of ATM \vee + DM signal that would match DATA the best Galactic WIMP search Earth WIMP search Solar WIMP search point-like source Galactic Center, Sun

In these coordinate systems signal is easy to distinguish from atmospheric neutrino background

Indirect Galactic Dark Matter Search

- WIMPs annihilate to known particles, which produce neutrinos
- GC visibility with SK:
 ~71% with UPMU, 100% FC/PC
- diffuse signal from entire Galaxy, peaked from Galactic Center
- Expected signal intensity strongly depends on halo model: NFW is considered as a benchmark model
- In case of neutrino annihilation channel, line signal in energy: best sensitivity among the annihilation channels

- ~150 systematic uncertainty terms included in the fit
- Fit results are consistent with null WIMP contribution
- > 90% C.L. upper limit on DM self-annihilation cross section $<\sigma_A V>$

SK-I - IV data taken from 1996 to 2016 (5325.8 live-days)

Super-Kamiokande, Phys.Rev.D 102 (2020) no.7, 072002

Indirect Solar Dark Matter Search

- WIMP at rest in the Galactic halo can get captured and settle in solar core by its interaction with nucleon
- Neutrinos escape the Sun, detected
- Equilibrium between capture rate and annihilation rate inside the Sun is assumed

$$\frac{dN}{dt} = C_C - C_A N^2 - C_E N \quad \Longrightarrow \quad \Gamma_A^{\rm equi} = \frac{1}{2} C_C$$

- Fit results are consistent with null WIMP contribution
- 90% C.L. upper limit on DM-nucleon scattering cross section σ_{xn}

SK-I - IV data taken from 1996 to 2012 (3903 live-days)

spin dependent interactions spin independent interactions 10² 10^{-1} SK I-IV, bb SK I-IV, bb DAMA/LIBRA (2008) DAMA/LIBRA (2008) — SK I-IV, τ⁺ τ⁻ JCAP 0904:010,2009 SK I-IV, τ⁺ τ⁻ JCAP 0904:010.2009 10⁻² LUX, WS2013+WS2014-16 SK I-IV, W⁺W⁻ SK I-IV, W⁺W LUX, WS2013+WS2014-16 10 arXiv:1608.07648 arXiv:1705.03380 WIMP-proton SD cross section [pb] PICO-60, 2016-2017 PICO-60, 2016-2017 MIMP-nucleon SI cross section [bp^{-3} = 10^{-4} = 10^{-5} = 10^{-5} = 10^{-6} = 10^{-7} = 10^{-8} arXiv:1702.07666 arXiv:1702.07666 IceCube, 2011-2014, bb IceCube, 2011-2014, bb IceCube, 2011-2014, τ*τ* IceCube, 2011-2014, T+T IceCube, 2011-2014, W*W IceCube, 2011-2014, W*W Eur. Phys. J.C(2017)77:146 Eur. Phys. J.C(2017)77:146 10-5 10⁻⁶ • -2 0-3 10⁻⁴ 10⁻⁹ 10⁻¹⁰ 10⁻⁵ 10³ 10³ 10² 10² 10⁴ 10⁴ 10 10 M_v [GeV/c²] M_y [GeV/c²]

K.Choi for the Super-Kamiokande, Phys.Rev.Lett. 114 (2015) no.14, 141301

Indirect Earth Dark Matter Search

- Spin-independent interactions dominate the capturing process
- If the mass of DM matches given heavy element, the capture rate increases considerably - resonant capture on the most abundant elements ¹⁶O, ²⁴Mg, ²⁸Si and ⁵⁶Fe and their isotopes

SK-I - IV data taken from 1996 to 2016

K.Frankiewicz thesis (paper is under preparation)

dark matter not found so far...

- A few anomalies but no consistent signal
- Dark matter may not be WIMP? Then what to do?
 - persistently look in (WIMP parameter space not yet closed)
 - look in every corner (experiment-driven strategy)

Go to Sub-GeV

- Sub-GeV DM is less searched because
 - "WIMP miracle" >2 GeV
 - direct detection experiments lose sensitivity

However,

Sub-GeV DM can also be a minimal thermal relic candidate & comes from wider modelings

SK compared to direct detection experiments: larger volume - ~1T vs 50kT higher energy threshold - ~keV vs 5MeV

- Current efforts in direct detection to detect sub-GeV signal (CRESST, DAMIC, SENSEI, CDMS, ...)
- How can SK contribute?
 - Indirect detection of sub-GeV DM no problem
 - Direct detection of sub-GeV DM?

Typical velocity of dark matter ~ O(10⁻³) c -> typical signal <100 keV

Boosted DM Search in SK

insight: sometimes it's easier to find "friend" of dark matter than dark matter itself (Agashe et al., arxiv:1405.7370)

If scattering signal of B is expected above SK E threshold → direct detection of "boosted dark matter"

Search for X-e scattering in the SK

- Very forward elastic scattering good angular pointing even at low energy
- e-like single ring, no hadrons -> no decay e, no neutrons
- background = atm v elastic scattering, (also CCQE contamination, ...)
- cut & count analysis for various cone-half angle to cover wide range of potential signal, background modeled by off-source data (except high-energy)

	$100 { m MeV}$	$< E_{vis}$	$< 1.33 { m ~GeV}$	1.33 Ge	$V < E_{vi}$	$_{is} < 20 { m ~GeV}$	E_{vis}	$_{\rm s} > 20$ (GeV
Search Cone	Expected Bckg	Data	Sig Rate Limit	Expected Bckg	Data	Sig Rate Limit	Expected Bckg	Data	Sig Rate Limit
	Dong		$(kT-y)^{-1}$	Dong		$(kT-y)^{-1}$	Dong		$(kT-y)^{-1}$
$GC 5^{\circ}$	8.4 ± 0.7	5	0.017	1.6 ± 0.3	1	0.018	0.016 ± 0.005	0	0.015
$ m GC~10^{\circ}$	32.0 ± 1.9	24	0.023	6.3 ± 0.84	5	0.026	0.060 ± 0.018	0	0.015
GC 15°	72.5 ± 3.5	69	0.078	13.6 ± 1.6	11	0.032	0.14 ± 0.04	0	0.014
$ m GC~20^{\circ}$	126.5 ± 5.4	125	0.123	23.3 ± 2.3	18	0.028	0.25 ± 0.07	0	0.014
$ m GC~25^{\circ}$	196.8 ± 7.6	202	0.201	35.4 ± 3.3	31	0.049	0.37 ± 0.11	0	0.013
$GC \ 30^{\circ}$	283.7 ± 10.1	285	0.214	49.3 ± 4.3	48	0.081	0.53 ± 0.16	0	0.012
$ m GC \ 35^{\circ}$	384.8 ± 12.8	375	0.187	68.1 ± 5.4	67	0.101	0.70 ± 0.21	0	0.011
$GC 40^{\circ}$	499.6 ± 15.9	494	0.249	90.2 ± 6.9	90	0.124	0.90 ± 0.27	0	0.011
Sun 5°	7.59 ± 0.18	5	0.017	1.25 ± 0.07	1	0.020	0.015 ± 0.004	0	0.015

- The analysis was done in a modelindependent way for any electron-scattering signal coming from the GC & the Sun
- One example constraint for dark photon interaction given for boosted dark matter B produced by annihilation in the GC (for m_B=200 MeV, m_Y=20 MeV, and g^{*}=0.5)

C. Kachulis for the Super-Kamiokande, Phys.Rev.Lett. 120 (2018) no.22, 221301

Non-Standard Interactions in Neutrino Oscillations

- A way of treating flavor-changing or non-universal (different amplitude for different flavor) interactions of neutrinos, with an effective four fermion Lagrangian
- Possible in many theory models of neutrino mass generation, GUT models...
- Atmospheric neutrinos interact with with u,d,e fermions during the propagating through the Earth

Fit to the μ -T sector

 Standard oscillation : 2-flavor approximation (standard osc. parameters fixed to SK best fit)

SK-I - IV data taken from 1996 to 2016 (5326 days live-days)

Normal Hierarchy

Consistent with the latest published results from IceCube DeepCore (*Phys. Rev. D 97, 072009*):

 $-6.7 \times 10^{-3} < \varepsilon_{\mu\tau} < 8.1 \times 10^{-3}$

M.Taani thesis

Fit to the e-T sector

- 3-flavor oscillation with 3 fit parameters (standard osc. parameters fixed to SK best fit)
- result shown in ε_{eτ} ε_{ττ}
 plane or various ε_{ee} values ranging [-4,4]

all $\epsilon_{\mu\alpha}$ set to 0

SK-I - IV data taken from 1996 to 2016 (5326 days live-days)

M.Taani thesis

Thermal Neutron tagging in Gd loaded water neutron capture cross section thermalisation (barns) In July 2020, dissolved 0.02% gadolinium- γ -cascade sulfate $(Gd_2(SO_4)_3)$ into the SK water $\overline{\nu}_e$ (8 MeV)Gd = 49700-> 50% neutron tagging efficiency (double S = 0.53the Hydrogen-tagging efficiency) Gd-capture e^+ H = 0.33Plan to dissolve more in 2022 O = 0.0002 $\Delta t \sim 30 \ \mu s$

With greater neutron tagging efficiency, - Better classification of neutrinos and antineutrinos - Improve the neutrino energy reconstruction - Additional power in discriminating CC events from NC events

> Primary physics goal: first observation of DSNB, Also will improve sensitivity to NSI & boosted DM searches

Conclusion

- Leading limits on DM annihilation cross-section to neutrinos, SD/SI scattering cross section with nucleon, especially at low energy
- First search for boosted dark matter from the Galactic Center or the Sun interacting in a terrestrial detector
 - first analysis of "electron elastic scatter-like" events in the SK high energy data
- Results for neutrino oscillations with NSI is consistent with no NSI in both μ-τ and e-τ sectors
- After 25 years since the beginning, SK has renovated once again to stay at the forefront of v physics: SK-Gd
 - results from SK-Gd data coming soon!

Back Up

Figure 8.3 The allowed standard oscillation parameter regions. Solid lines show allowed regions when including NSI and the dotted lines show the regions without NSI. Taken from [133].

ε_{ee}	SK NSI 2011	New Result	$arepsilon_{ee}$	SK NSI 2011	New Result
1.5	$-0.09 < \varepsilon_{\tau\tau} < 0.15$	$-0.05 < \varepsilon_{\tau\tau} < 0.35$	1.5	$ \varepsilon_{e\tau} < 0.54$	$-0.75 < \varepsilon_{e\tau} < 0.3$
0.0	$-0.09 < \varepsilon_{\tau\tau} < 0.21$	$-0.075 < \varepsilon_{\tau\tau} < 0.15$	0.0	$ \varepsilon_{e\tau} < 0.39$	$-0.225 < \varepsilon_{e\tau} < 0.2$
-1.5	$-0.15 < \varepsilon_{\tau\tau} < 0.09$	$-0.075 < \varepsilon_{\tau\tau} < 0.125$	-1.5	$ \varepsilon_{e\tau} < 0.24$	$-0.1 < \varepsilon_{e\tau} < 0.12$

ε_{ee}	SK NSI 2011	New Result
1.5 0.0	$\begin{aligned} \varepsilon_{e\tau} &< 0.54 \\ \varepsilon_{e\tau} &< 0.39 \\ \varepsilon_{e\tau} &< 0.39 \end{aligned}$	$-0.75 < \varepsilon_{e\tau} < 0.325$ $-0.225 < \varepsilon_{e\tau} < 0.225$
-1.5	$ \varepsilon_{e\tau} < 0.24$	$-0.1 < \varepsilon_{e\tau} < 0.125$