Long Time Simulation Framework of Supernova Neutrino

MASAMITSU MORI UNIVERSITY OF TOKYO ASTRODARK-2021 DECEMBER 7TH, 2021 ONLINE

https://hubblesite.org/resource-gallery

Overview

- Supernovae give birth to neutron stars and black holes
- Releases a lot of neutrinos
- **Today's theme**

Long time simulation of supernovae is important

Keywords

• Supernova, neutron star, neutrino, Super-kamiokande

Supernova

- 8 times heavier stars than the sun happen huge explosion
- Complicated phenomenon in which all the four forces of nature are related

≻Not analytic calculation but heavy computation is needed

- Energy of 10⁵³erg is released as neutrino
 - ➢ Only one observation in 1987 (SN1987A)

SN1987A information

Distance:51.2 kpc Number of events: Detector

- 11: Kamiokande(2.14 kton)
- 8: IMB [2]
- 5: Baksan [3]

[1]Hirata et al. 1987[2]Bionta et al. 1987[3]Alekseev et al. 1987

Supernova evolution

Supernova simulation problem

• Most simulations concentrate on early 1 sec.

We will a long time simulation and an analysis framework.

Integrated framework

- Simulator which calculates from explosion to observation on earth.
- If a supernova is detected, the framework quickly analyze.

SN simulator

• Supernova simulation

Method of long time simulation

- Simulate supernovae in one-dimension
- Code
 - GR1Dv2 (public code: http://stellarcollapse.org)
 - O'Connor, ApJS 219 24 2015
 - Modified for long time simulation
 - ► Resolved reference out of physics tables
 - ≻Optimized resolution of time and space
 - ➤Made a new suitable neutrino reaction table

Without artificial methods

Neutrino reaction Equation of state

Diagram of simulation

Successful explosion

- Red : Radii at which densities are constant
- Black : Radius of a shockwave
- Succeed to explode with the suitable choice of progenitors and **without artificial methods**

>9.6 solar mss, initial metallicity is 0

Called z9.6

Long time simulation

- Average energies decrease from above 10 MeV to 6 MeV
- $\langle E_{\nu_{\rm e}} \rangle < \langle E_{\overline{\nu}_{\rm e}} \rangle < \langle E_{\nu_{\rm x}} \rangle$
- Luminosities drecrease from 10⁵³erg/s
 ➤ These features agree with other simulations
 ➤ PNS cooling is calculated.

Detector simulator

- Detector simulation
- Simulates how signals of supernovae look like on earth
- Mock Sample is used for analysis practice and detector evaluation.

Event simulation

12

Super-Kamiokande(SK)

- Water Cherenkov detector in the Gifu prefecture.
 - ≻Height: 41.4 m
 - Diameter: 39.3 m
 - ≻Volume for SN burst: 32.5 kton
 - ≻Number of PMTs:11,129
 - ≻Energy threshold: 5MeV
- Various neutrino studies
 ▶atmosphere, solar, accelerator...

http://www-sk.icrr.u-tokyo.ac.jp

Monitoring supernovae for 24 hours
 If galactic supernovae happen, it is predicted to detect from 2,000 to 7,000 events.

Scatter plot (Mock sample)

- Each event is simulated with random number (10kpc)
- Left : cosine distribution between neutrinos and charged leptons.
- Right : Time evolution of energy
 ≻Almost all IBD, ES scatters forward.

Mock samples are applied for various studies

Development and practice of analysis methods

≻Evaluation of SK

Neutrino and neutron star mass

- Three simulations which lead to different neutron star mass
- If distance is determined, neutron star mass is maybe determined. More simulations are needed.
- \succ In addition, I'm developing simulation in the case of BH formation.

Summary

Summary

- Supernovae give birth to neutron stars and black holes
- Established the long time simulation
- Estimated neutrino signals at Super-Kamiokande

To do

- More progenitors will be simulated
- Calculate black hole formation
- Develop an analysis method

Back up

Device of grids

- Red : Density structure of PNS
- Yellow : Initial grids (600 grids)
- Blue : Optimized grids (300 grids)
- The region in which the density drastically changes is finely resolved.
 > Initial grids make calculation stop at about 5 sec.
 > Cost is also too high

	Huedepohl (1D)	Fischer (1D)	Multi-dimension Takiwaki(2016), Suwa(2016)… etc	This study
Iron core	×	0	0	0
Natural explosion	0	×	0	0
Max time	20 s	20 s	< 1 s	20 s

- To explode without artificial methods in one-dimension is difficult
 - Enhancement of neutrino reaction rates
 - Removal of material accreting
- Long time simulation in multi-dimension is impossible
- We do long time simulation in one-dimension without artificial methods

中性子星の質量と爆発エネルギー

- ・中性子星の質量は1.36M_☉
 - ・典型的な質量は 1M_☉~2M_☉
- •爆発エネルギーは4×1049 erg
 - ・ 典型的は10⁵⁰erg
 - ・少し小さいが、10⁴⁹erg程度の超新星爆発も見つかっている。

GR1Dのニュートリノ反応

生成・消滅

$$\nu_{e} + n \leftrightarrow p + e^{-},$$

$$\bar{\nu}_{e} + p \leftrightarrow n + e^{+},$$

$$\nu_{e} + (A, Z) \leftrightarrow (A, Z + 1) + e^{-},$$

弾性散乱

$$\nu + \alpha \to \nu + \alpha,$$

$$\nu_{\mathbf{i}} + p \to \nu_{\mathbf{i}} + p,$$

$$\nu_{\mathbf{i}} + n \to \nu_{\mathbf{i}} + n,$$

$$\nu + (A, Z) \to \nu + (A, Z),$$

非弾性散乱

$$\nu_{\mathbf{i}} + e^- \to \nu_{\mathbf{i}}' + e^{-\prime},$$

熱化過程

$$e^- + e^+ \to \nu_{\mathbf{x}} + \bar{\nu}_{\mathbf{x}},$$
$$N + N \to N + N + \nu_{\mathbf{i}} + \bar{\nu}_{\mathbf{i}},$$

Reaction rate

- Assumed a supernova happen at 10 kpc (Distance to the galactic enter: 8kpc)
- About 2,000 events at 20 seconds
- In the later time, neutrino oscillation has little influence